Non-axisymmetric coupled problem of thermoelectroelasticity for a long multi-layered cylinder
DOI:
https://doi.org/10.24866/2227-6858/2025-1/3-17Keywords:
Non-axisymmetric problem of thermoelectroelasticity, long multi-layered cylinder, piezoceramics, Fourier transforms, biorthogonal finite integral transformsAbstract
To enhance the efficiency and accuracy of temperature piezoceramic sensors, it is essential to develop algorithms for solving various problems of the thermoelectroelasticity theory. Characterizing the relatively weak coupling effect between fields of different physical natures leads to construction of closed analytical solutions. In this article authors consider the problem of thermoelectroelasticity for a long multi-layered cylinder, one layer of which is made permanently from piezoceramics, while the others vary in material, thickness and arrangement within the structure. On the inner surface of the cylinder, a boundary condition of the first kind is applied in the form of a non-stationary non-axisymmetric thermal impact. On the outer surface, a law of convective heat exchange (third kind boundary condition) and a constant ambient temperature are specified. The surfaces of the piezoceramic layer are coated with electrodes and connected to a measuring device with high input resistance, moreover the inner surface of the piezoceramics is grounded. The limitation on the rates of thermal impact and structure thickness changes allowed to use the equations of equilibrium, electrostatics and heat conduction into the mathematical formula. The initial boundary value problem is solved in a coupled formulation. A closed solution to the non-self-adjoint system of differential equations was constructed by using Fourier transforms along the circumferential coordinate and generalized biorthogonal finite integral transforms along the radial coordinate. The resulting dependencies allowed for the description of thermal, electrical and elastic fields in the multi-layered cylinder, as well as the analysis of the influence of the physical and mechanical characteristics of the materials and layer thicknesses on the magnitude of the induced electrical signal under non-axisymmetric non-stationary thermal impact.
References
1. Ионов Б.П., Ионов А.Б. Спектрально-статистический подход к бесконтактному измерению температуры // Датчики и системы. 2009. № 2. С. 9–11. EDN: JWYALN.
2. Паньков А.А. Резонансная диагностика распределения температуры пьезоэлектролюминесцентным оптоволоконным датчиком по решению интегрального уравнения Фредгольма // Вестник Пермского национального исследовательского политехнического университета. Механика. 2018. № 2. С. 72–82. DOI: https://doi.org/10.15593/perm.mech/2018.2.07
3. Mindlin R.D. Equations of high frequency vibrations of thermopiezoelectric crystal plates // International Journal of Solids and Structures. 1974. Vol. 10(6). P. 625–637. DOI: https://doi.org/10.1016/0020-7683(74)90047-X
4. Lord H.W., Shulman Y. A generalized dynamical theory of thermoelasticity // Journal of the Mechanics and Physics of Solids. 1967. Vol. 15(5). P. 299–309. DOI: https://doi.org/10.1016/0022-5096(67)90024-5
5. Green A.E., Naghdi P.M. Thermoelasticity without energy dissipation // Journal of Elasticity. 1993. Vol. 31. P. 189–208. DOI: https://doi.org/10.1007/BF00044969. EDN: XRWGQG 7
6. Нестерович А.В. Неосесимметричное термосиловое деформирование круговой трёхслойной пластины // Проблемы физики, математики и техники. 2016. № 2(27). С. 54–60. EDN: WDGLPR
7. Куликов И.С., Ширвель П.И. Решение неосесимметричной задачи термоупругости для неравномерно нагретого длинного цилиндра в условиях ползучести // Вестник БНТУ. 2009. № 4. С. 75–80. EDN: WHRKZN
8. Tokovyy Yu., Ma C.-C. Analysis of 2D non-axisymmetric elasticity and thermoelasticity problems for radially inhomogeneous hollow cylinders // Journal of Engineering Mathematics. 2008. Vol. 61. P. 171–184. DOI: https://doi.org/10.1007/s10665-007-9154-6
9. Zhi Yong Ai, Wei Yong Feng, Yong Zhi Zhao. Analytical layer element analysis for non-axisymmetric problem of multilayered thermoelastic media // Computers and Geotechnics. 2022. Vol. 147. DOI: https://doi.org/10.1016/j.compgeo.2022.104759
10. Hafed Z.S., Zenkour A.M. Refined generalized theory for thermoelastic waves in a hollow sphere due to maintained constant temperature and radial stress // Case Studies in Thermal Engineering. 2025. Vol. 68. Art. 105905. DOI: https://doi.org/10.1016/j.csite.2025.105905
11. Kamenskikh A.O., Lekomtsev S.V., Senin A.N., Matveenko V.P. Free vibration of electroelastic thin-walled structures under static load // International Journal of Solids and Structures. 2025. Vol. 306. P. 1–15. DOI: https://doi.org/10.1016/j.ijsolstr.2024.113123
12. Ji Qi, Ran Teng, H. Elhosiny Ali, Mohammad Arefi. A general electroelastic analysis of piezoelectric shells based on levy-type solution and eigenvalue-eigenvector method // Heliyon. 2023. Vol. 9(7). DOI: https://doi.org/10.1016/j.heliyon.2023.e17634
13. Ke Liang, Qiuyang Hao, Zheng Li, Qian Cheng. A study on solid-shell finite element formulations applied to nonlinear thermoelastic analysis of thin-walled structures // Thin-Walled Structures. 2024. Vol. 205. DOI: https://doi.org/10.1016/j.tws.2024.112546
14. Jabbari M., Sohrabpour S., Eslami M.R. General solution for mechanical and thermal stresses in a functionally graded hollow cylinder due to non-axisymmetric steady-state loads // Journal of Applied Mechanics. 2003. Vol. 70(1). P. 111–118. DOI: https://doi.org/10.1115/1.1509484
15. Atrian A., Fesharaki J.J., Majzoobi G.H., Sheidaee M. Effects of electric potential on thermo-mechanical behavior of functionally graded piezoelectric hollow cylinder under non-axisymmetric loads // International J. of Mechanical, Aerospace, Industrial, Mechatronic and Manufacturing Engineering. 2011. Vol. 5(11). P. 2441–2444. DOI: https://doi.org/10.5281/zenodo.1060363
16. Dai H.L., Luo W.F., Dai T. Exact solution of thermoelectroelastic behavior of a fluid-filled FGPM cylindrical thin-shell // Composite Structures. 2017. Vol. 162. P. 411–423. DOI: https://doi.org/10.1016/j.compstruct.2016.12.002
17. Ishihara M., Ootao Y., Kameo Y. A general solution technique for electroelastic fields in piezoelectric bodies with D∞ symmetry in cylindrical coordinates // Journal of Wood Science. 2016. Vol. 62. P. 29–41. DOI: https://doi.org/10.1007/s10086-015-1524-5
18. Ishihara M., Ootao Y., Kameo Y. Analytical technique for thermoelectroelastic field in piezoelectric bodies with D∞ symmetry in cylindrical coordinates // Journal of Thermal Stresses. 2017. Vol. 41(6). P. 1–20. DOI: https://doi.org/10.1080/01495739.2017.1368052
19. Шляхин Д.А., Юрин В.А. Неосесимметричная нестационарная задача термоэлектроупругости для длинного пьезокерамического цилиндра // Инженерный журнал: наука и инновации. 2023. № 7. С. 677–691. DOI: https://doi.org/10.18698/2308-6033-2023-7-2288
20. Коваленко А.Д. Основы термоупругости. Киев: Наукова думка, 1970, 307 с.
21. Партон В.З., Кудрявцев Б.А. Электромагнитоупругость пьезоэлектрических и электропроводных тел. М.: Наука, 1988, 470 с.
22. Снеддон И.Н. Преобразования Фурье. М.: Иностранная литература, 1955, 668 с.
23. Сеницкий Ю.Э. Биортогональное многокомпонентное конечное интегральное преобразование и его приложение к краевым задачам механики // Изв. вузов. Математика. 1996. № 8. С. 71–81.
24. Шляхин Д.А., Юрин В.А., Ратманова О.В. Связанная неосесимметричная нестационарная задача термоупругости для длинного цилиндра // Вестник Томского государственного университета. Математика и механика. 2024. № 90. С. 152–166. DOI: https://doi.org/10.17223/19988621/90/13
25. Shlyakhin D.A., Yurin V.A. Non-axisymmetric coupled unsteady thermoelectroelasticity problem for a long piezoceramic cylinder // Mechanics of Solids. 2024. Vol. 59(2). P. 781–792. DOI: https://doi.org/10.1134/S002565442360232X
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Far Eastern Federal University: School of Engineering Bulletin

This work is licensed under a Creative Commons Attribution 4.0 International License.