High penetrating mixtures for road bases

Authors

DOI:

https://doi.org/10.24866/2227-6858/2024-1/96-112

Keywords:

material, road, coating, base, mixture

Abstract

The state of the Russia road network requires a significant number of construction and repair measures, including those aimed at increasing the durability of road bases. A wide range of high penetrating mixtures (HPM) has been developed from composite binders (CB), crushed to Ssp = 500 m2/kg, obtained on the basis of CEM I 42.5 N of Belgorod Cement, partially replaced by technogenic resources with the addition of the superplasticizer Poliplast PFK-NLM. The viscosity characteristics of the developed mixtures indicate their high penetrating ability, because the flow time of the studied materials through the Marsh viscometer at V/B = 0.62 and a water flow rate of 140 l/m3 is 33-39 seconds. The onset of setting is at least 75 minutes, which allows for effective fastening of road pavement bases. The composite binder contributes to a significant increase in the early compressive strength of HPM (up to 56% compared to the control composition) and flexural strength (up to 75%). The ratio of tensile strength in bending and compression one of the developed compositions (on the second day is 0.13, on the seventh one is 0.11, and at grade age is 0.12) often exceeds the similar characteristic of the control composition, despite the replacement of Portland cement by more than 50 wt. % of waste from wet magnetic separation (WMS) of ferruginous quartzites, technogenic fibrous materials (TFM) and superplasticizer (SP), which indicates the development of crack resistance of the material. It was established that the deformation characteristics of the mixture hardened with CB-50SP + 1% TFM increased by 112% compared to the mixture with CEM I 42.5 N cement. Studies of the deformative properties of mixtures allow to conclude that, based on the developed HPM and crushed stone from metamorphic shales, it is possible to obtain concrete for road foundations that comply with the regulatory documentation for this type of construction. Testing of samples of reinforced crushed stone foundations for the entire range of physical and mechanical properties and operational characteristics showed that the developed HPM compositions make it possible to obtain class B5 – B10 concrete when strengthening crushed stone foundations, and they can be used in the construction of foundations of category II highways

Author Biographies

  • Sergey V. Klyuyev, Belgorod State Technological University named after V.G. Shoukhov, Belgorod

    доктор технических наук, доцент, заведующий Научно-исследовательской лаборатории ресурсо-энергосберегающих технологий, оборудования и комплексов Белгородского государственного технологического университета им. В.Г. Шухова (Белгород, Россия)

  • Svetlana V. Zolotareva, Belgorod State Technological University named after V.G. Shoukhov, Belgorod

    Graduate Student of the Belgorod State Technological University named after V.G. Shoukhov (Belgorod, Russia)

  • Narman А. Аyubov, Kh. Ibragimov Complex Institute of the Russian Academy of Sciences, Grozny

    Candidate of Engineering Sciences, Associate Professor, Researcher at Kh. Ibragimov Complex Institute of the Russian Academy of Sciences (Grozny, Russia)

  • Roman S. Fediuk, Far Eastern Federal University, Vladivostok

    Doctor of Engineering Sciences, Associate Professor, Professor of the Military Training Center at the Far Eastern Federal University (Vladivostok, Russia)

  • Yury L. Liseytsev, Sholom-Aleichem Priamursky State University, Birobidzhan

    Applicant of the Sholom-Aleichem Priamursky State University (Birobidzhan, Russia)

References

Amran M., Fediuk R., Abdelgader H.S., Murali G., Ozbakkaloglu T., Lee Y.H., Lee Y.Y. Fiber-reinforced alkali-activated concrete: a review // Journal of Building Engineering. 2022. Vol. 45. Art. 103638.

Aziez M.N., Achour A., Bahaz A., Lakhdari Z. Effect of waste brick powder rich in SiO2 on the physical and mechanical properties of Portland cement concrete containing coarse recycled asphalt pavement aggregates (RAP) // Journal of Building Engineering. 2023. Vol. 76. Art. 107337. https://doi.org/10.1016/j.jobe.2023.107337

Chiranjeevi K., Kumar D.H., Yathish R.G., Ravi Shankar A.U. Laboratory investigation on cement-treated recycled concrete aggregate bases for flexible pavements // Materials Today: Proceedings. 2023. https://doi.org/10.1016/j.matpr.2023.03.509

Dilip D.M., Sivakumar Babu G.L. System reliability-based design optimization of flexible pavements using adaptive meta-modelling techniques // Construction and Building Materials. 2023. Vol. 367. Art. 130351. https://doi.org/10.1016/j.conbuildmat.2023.130351

Fang M., Chen Y., Zhu M. Toughness improvement mechanism and evaluation of cement concrete for road pavement: A review // Journal of Road Engineering. 2023. Vol. 3(2). P. 125–140. https://doi.org/10.1016/j.jreng.2023.01.005

Fediuk R., Mochalov A., Timokhin R. Review of methods for activation of binder and concrete mixes // AIMS Materials Science. 2018. Vol. 5(5). Р. 916–931.

Feng S., Gao M., Jin X., Zhao T., Yang F. Fine-grained damage detection of cement concrete pavement based on UAV remote sensing image segmentation and stitching // Measurement. 2024. Vol. 226. Art. 113844. https://doi.org/10.1016/j.measurement.2023.113844

Karthikeyan K., Kothandaraman S., Sarang G. Perspectives on the utilization of Reclaimed Asphalt Pavement in concrete pavement construction: A critical review // Case Studies in Construction Materials. 2023. Art. e02242. https://doi.org/10.1016/j.cscm.2023.e02242

Li C., Lei S., Xiao Q., Pan Y., Han X., Chen Q. An experimental and numerical investigation on the load transfer efficiency of a novel prefabricated cement concrete pavement // Structures. 2023. Vol. 53. P. 963–972. https://doi.org/10.1016/j.istruc.2023.04.130

Li Y., Li L., Liu Z. Preparation and evaluation of a fluorinated nano-silica super-hydrophobic coating for cement pavement // Construction and Building Materials. 2022. Vol. 360. Art. 129478. https://doi.org/10.1016/j.conbuildmat.2022.129478

Махортов Д.С., Загороднюк Л. Х., Сумской Д. А. Вяжущие композиции на основе портландцемента и вулканического пепла // Строительные материалы и изделия. 2022. Т. 5, № 4. С. 30–38. https://doi.org/10.58224/2618-7183-2022-5-4-30-38

Murali G., Fediuk R. A Taguchi approach for study on impact response of ultra-high-performance polypropylene fibrous cementitious composite // Journal of Building Engineering. 2020. Vol. 30. Art. 101301.

Панарин И.И., Федюк Р.С., Выходцев И.А., Вавренюк С.В., Клюев А.В. Инъекционные растворы на композиционных цементах для закрепления грунтов // Строительные материалы и изделия. 2023. Т. 6, № 4. С. 15–29. https://doi.org/10.58224/2618-7183-2023-6-4-15-29

Patil R.R., Katare V.D. Application of fiber reinforced cement composites in rigid pavements: A review // Materials Today: Proceedings. 2023. https://doi.org/10.1016/j.matpr.2023.04.415

Pham P.N., Tran T.T.T., Zhuge Y. Rubberized cement-stabilized aggregates: Mechanical performance, thermal properties, and effect on temperature fluctuation in road pavements // Transportation Geotechnics. 2023. Vol. 40. Art. 100982. https://doi.org/10.1016/j.trgeo.2023.100982

Sinitsin D.A., Elrefaei A.E.M.M., Glazachev A.O., Kuznetsov D.V., Parfenova A.A., Volokitina I.E., Kayumova E.I., Nedoseko I.V. Study of the characteristics of pavement elements made of rein-forced soil with the use of secondary resources // Construction Materials and Products. 2023. Vol. 6, № 6. Art. 2. https://doi.org/10.58224/2618-7183-2023-6-6-2

Sun B., Xu T., Zhang H., Li Y., Huang X., Qi L., Zhao L. Analysis of alkali leaching mechanism on as-built cement concrete bridge deck pavement: View from the perspective of mesostructure characteristics // Construction and Building Materials. 2023. Vol. 409. Art. 134054. https://doi.org/10.1016/j.conbuildmat.2023.134054

Wang C., Chazallon C., Jing P., Hornych P., Latour B. Effect of self-cementing properties on the mechanical behaviour of recycled concrete aggregates in unbound pavement layers // Transportation Geotechnics, 2023. Vol. 42. Art. 101054. https://doi.org/10.1016/j.trgeo.2023.101054

Wang C., Chazallon C., Braymand S., Hornych P. Thermogravimetric analysis (TGA) for characterization of self-cementation of recycled concrete aggregates in pavement // Thermochimica Acta. 2024. Vol. 733. Art. 179680. https://doi.org/10.1016/j.tca.2024.179680

Wang H., Wu Y., Guo Y. In-site health monitoring of cement concrete pavements based on optical fiber sensing technology // Journal of Road Engineering. 2023. Vol. 3, Issue 1. Р. 113–123. https://doi.org/10.1016/j.jreng.2022.09.003

Yao Y., Li S., Jiang Y. Experimental-mechanistic analysis of pavement base deflections measured with light weight deflectometer // Journal of Traffic and Transportation Engineering. 2023. Vol. 10, Issue 2. P. 320–330. https://doi.org/10.1016/j.jtte.2021.08.006

Zhao H., Yang F., Qian X., Tian Y., Yang H., Li M., Fang Y., Wang J., Ling J. A bio-inspired mineral precipitation method to improve the freeze-thaw resistance of cement concrete pavement // Journal of Cleaner Production. 2023. Vol. 419. Art. 138277. https://doi.org/10.1016/j.jclepro.2023.138277

Zhao J., Wang X., Zhou B., Wu W., Zheng W., Yuan C. Influence of surface characteristics of cement pavement on ice-concrete adhesion // Construction and Building Materials. 2023. Vol. 394. https://doi.org/10.1016/j.conbuildmat.2023.132259

Zhao W., Yang Q., Liu J., Wu W. Influence analysis of the selection of foundation model on fatigue stress evaluation results of cement concrete pavement-based on GPR and FWD // Construction and Building Materials. 2022. Vol. 347. Art. 128586. https://doi.org/10.1016/j.conbuild-mat.2022.128586

Zhao W., Zhang J., Lai J., Shi X., Xu Z. Skid resistance of cement concrete pavement in highway tunnel: A review // Construction and Building Materials. 2023. Vol. 406. Art. 133235. https://doi.org/10.1016/j.conbuildmat.2023.133235

Zhao W., Yang Q., Wu W., Liu J. Structural condition assessment and fatigue stress analysis of cement concrete pavement based on the GPR and FWD // Construction and Building Materials. 2022. Vol. 328. https://doi.org/10.1016/j.conbuildmat.2022.127044

Zheng Z., Guo N., Sun Y., Wang J., You Z. A novel approach for the mechanical response of cement concrete pavement structure considering the interlaminar interface shear slip effect // Structures. 2023. Vol. 57. Art. 105066. https://doi.org/10.1016/j.istruc.2023.105066

Zhong J., Huyan J., Huang B. A deeper generative adversarial network for grooved cement concrete pavement crack detection // Engineering Applications of Artificial Intelligence. 2023. Vol. 119. Art. 105808. https://doi.org/10.1016/j.engappai.2022.105808

Downloads

Published

2024-03-29

Issue

Section

Building Materials and Products

How to Cite

1.
High penetrating mixtures for road bases. Вестник Инженерной школы ДВФУ [Internet]. 2024 Mar. 29 [cited 2024 Nov. 24];1(1(58):96-112. Available from: https://journals.dvfu.ru/vis/article/view/1084