Study of choice optimal launch and recovery system for USV motherships

Authors

  • Kirill D. Ovchinnikov State Marine Technical University of St. Petersburg, Saint Petersburg https://orcid.org/0000-0001-8753-6243
  • Anton V. Mityushin State Marine Technical University of St. Petersburg, Saint Petersburg
  • Maksim O. Frank State Marine Technical University of St. Petersburg, Saint Petersburg

DOI:

https://doi.org/10.24866/2227-6858/2024-1/41-55

Keywords:

launch and recovery system, unmanned surface vehicle, USV, mothership, deck-mounted crane, A-frame, stern ramp, effectiveness criteria, hierarchy analysis method

Abstract

This paper provides results of the application and effectiveness analysis of most common types of launch and recovery system (LRS) for the unmanned surface vehicle (USV) mothership (MS): a deck-mounted crane, A-frame and stern ramp. The analysis bases on the example of a high ice-class hydrographic survey and navigation service ship. The hierarchy analysis method uses to assess the effectiveness. The first level of hierarchy consists ten criteria. As a result of the research it shows that the most important criteria in assessing the LRS effectiveness are redundancy capability, usage of area and resistance to the environment, as well as multi-functionality. The most minor criteria are the cost and manufacturability of LRS production. The applicability of various LRS analyzes by designing on MS example with a focus on the most important LRS effectiveness criteria. More than 50 variations of LRS and USV placing on the main deck consider. After performing an analysis of the applicability of various LRS and USV, the total effectiveness calculates. The best LRS variation for the present example is an A-frame. It should be noted that despite the fact that there is one leader after the assessment performed, the obtained values are quite close, which is coherent with appliance of all considered LRS types on research, hydrographic survey and other vessels.

Author Biographies

  • Kirill D. Ovchinnikov, State Marine Technical University of St. Petersburg, Saint Petersburg

    Candidate of Engineering Sciences, Associate Professor, Department of Ship Design, State Marine Technical University in St. Petersburg (Saint Petersburg, Russia),

  • Anton V. Mityushin, State Marine Technical University of St. Petersburg, Saint Petersburg

    Graduate Student, State Marine Technical University in St. Petersburg (Saint Petersburg, Russia)

  • Maksim O. Frank, State Marine Technical University of St. Petersburg, Saint Petersburg

    Graduate Student, State Marine Technical University in St. Petersburg (Saint Petersburg, Russia)

References

Быстров Б.В., Светлов М.А., Кулешов К.В. Методологические подходы по обоснованию места и роли безэкипажных катеров в системе вооружения ВМФ РФ // Морской сборник. 2018. № 12(2061). С. 69–74. EDN: YOLRZJ

Пушкарёв И.И. Российские безэкипажные катера: существующие проекты и их особенности // Сборник докладов 69-й международной молодежной научно-технической конференции «Молодежь. Наука. Инновации», 8–10 декабря 2021 г. В 2 томах. Владивосток: Морской государственный университет, 2022. Т. 1. С. 15–21.

Франк М.О., Овчинников К.Д. Ретроспективный анализ проектных характеристик безэкипажных судов // Труды Крыловского государственного научного центра. 2020. Специальный выпуск 2. С. 160–164. https://doi.org/10.24937/2542-2324-2020-2-S-I-160-164

Викторов Р.В., Кнуров М.В. Безэкипажный катер. Обучающий робототехнический комплекс с модульной полезной нагрузкой // Вестник военного образования. 2022. № 4(37). С. 79–82. EDN: NYHQNK

Vikranth T., Srinivasan R., Krishna S., Rajesh K. Design and development of remotely operated unmanned surface vehicle for oceanographic studies // Global oceans, 2020: Singapore – U.S. Gulf Coast Biloxi, MS, USA, 05-30 October 2020. IEEE, 2021. 522 p. http://doi.org/10.1109/ieeeconf-38699.2020.9389023

Илларионов Г.Ю., Лаптев К.З. Шмаков А.С., Дмитриев С.С. К вопросу создания плавучей базы морских робототехнических комплексов // Технические проблемы освоения мирового океана. 2019. Т.8. С. 16–22. EDN: MJMXZI

Франк М.О., Овчинников К.Д. Обзор применения безэкипажных катеров и перспективности использования для них специализированных судов-носителей // Морские интеллектуальные технологии. 2023. № 3, часть 2. С. 19–29. http://doi.org/10.37220/MIT.2023.61.3.023

Marks A.W., Fahlman G.H. Ships and handling equipment for support of subsea work system // Ocean: Proc. OCEAN '74, Halifax, NS, Canada, 21–23 August 1974. Canada: IEEE, 1974. P. 316–327. http://doi.org/10.1109/OCEANS.1974.1161377

McTaggart K., Hendriks S., Nimmo-Smith I., Oydegard A., Pattison J., Stuntz N. Considerations in development of naval ship design criteria for launch and recovery. Ottawa: Defence R&D Canada, 2016. 15 p.

Lee K.Y. Consideration of launch and recovery systems for operation of underwater robot from manned platform // Journal of Ocean Engineering and Technology. 2016. № 30(2). Р. 141–149. http://dx.doi.org/10.5574/KSOE.2016.30.2.141

McTaggart K. Hydrodynamic interactions during launch and recovery of a small boat from a ship in a seaway. USA: Defense Technical Information Center, 2014. 9 p.

Roy A., Steine D., Nicoll R. Simulation of launch and recovery of small craft including cable collisions and cable tensions from deck personnel. Canada: Defence R&D Canada – Atlantic, 2013. 70 p.

Zheng S., Yang Y., Peng Y., Cui J., Chen J., Jiang X., Feng Y. An automated launch and recovery system for usvs based on the pneumatic ejection mechanism // Intelligent Robotics and Applications: 12th International Conference, ICIRA 2019, Shenyang, China, August 8–11, 2019. Springer Nature Switzerland AG, 2019. P. 289–300. https://doi.org/10.1007/978-3-030-27535-8_27

Sarda E.I., Dhanak M.R. A USV-based automated launch and recovery system for AUVs // Journal of Oceanic Engineering. 2016. Vol. 42, № 1. Р. 37–55. https://doi.org/10.1109/JOE.2016.2554679

Саати Т. Принятие решений, метод анализа иерархий / пер. с англ. Р.Г.Вачнадзе. Москва: Радио и связь, 1993. 278 с.

USV Launch & Recovery System successfully tested at rough sea states. URL: https://www.unmannedsystemstechnology.com/2019/12/usv-launch-recovery-system-successfully-tested-at-rough-sea-states/ (дата обращения: 17.01.2024).

Кипер А.В., Давлюд И.И. Перспективные грузоподъемные устройства с системами компенсации качки для передачи боеприпасов в открытом море // I-methods. 2019. Т. 11, № 4. EDN: ELUDKR

Unmanned surface vehicles evaluated for hydrographic survey. URL: https://nauticalcharts.noaa.gov/updates/unmanned-surface-vehicles-evaluated-for-hydrographic-survey/ (дата обращения: 17.01.2024).

China's first test base for unmanned ships to be operational. URL: http://xinhuanet.com/english/2019-09/16/c_138395800.htm (дата обращения: 17.01.2024).

Cradle. URL: https://www.vestdavit.no/launch-recovery-systems-lars/launch-and-recovery-systems-usv-uuv/cradle (дата обращения: 17.01.2024).

Chun H.H., Kim M.C., Lee I., Kim K., Lee J.K., Jung K.H. Experimental investigation on stern-boat deployment system and operability for Korean coast guard ship // International Journal of Naval Architecture and Ocean Engineering. 2012. Vol. 4, Iss. 4. Р. 488–503. http://dx.doi.org/10.2478/IJNAOE-2013-0113

Sheinberg R., Minnick P.V., Beukema T.G., Kauczynski W., Silver A.L., Cleary C. Stern boat deployment systems and operability // World Maritime Technology Conference, October 17–20, 2003, San Francisco, USA. Jersey City: Society of Naval Architects and Marine Engineers, 2003.

Saab MCMV 80: Next generation multi-function mine counter measure vessel. URL: https://navyrecognition.com/index.php/focus-analysis/naval-technology/5760-saab-mcmv-80-next-generation-multi-function-mine-counter-measure-vessel.html (дата обращения: 17.01.2024).

LARS for future Belgian and Dutch MCM motherships successfully tested. URL: https://www.navalnews.com/naval-news/2022/01/lars-for-future-belgian-and-dutch-mcm-motherships-successfully-tested/ (дата обращения: 17.01.2024).

Small P. Unmanned maritime systems update. Unmanned maritime systems (PMS 406). Presentation. January 15, 2019. URL: https://www.navsea.navy.mil/Portals/103/Documents/Exhibits/SNA-2019/UnmannedMaritimeSys-Small.pdf (дата обращения: 17.01.2024).

Sea naval solutions details proposal for the Belgian-Dutch MCM program. URL: https://www.navalnews.com/naval-news/2019/02/sea-naval-solutions-details-proposal-for-the-belgian-dutch-mcm-program/ (дата обращения: 17.01.2024).

Downloads

Published

2024-03-29

Issue

Section

Ship Design, Construction of Vessels

How to Cite

1.
Study of choice optimal launch and recovery system for USV motherships. Вестник Инженерной школы ДВФУ [Internet]. 2024 Mar. 29 [cited 2024 Nov. 24];1(1(58):41-55. Available from: https://journals.dvfu.ru/vis/article/view/1074