Modeling of prolonged 5-fluorouracil chemotherapy using a subcutaneous ceramic system in the experiment

Authors

Keywords:

prolonged chemotherapy, ceramic implantable carrier, 5-fluorouracil

Abstract

The use of the ceramic carrier implanted into animals tissue allows to achieve a therapeutic level of 5-fluorouracil in the blood for 1 month. After placing the ceramic carrier, local necrosis of the surrounding tissue is observed. The “empty” ceramic system caused an inflammatory reaction in the surrounding tissues but without any necrosis.

Author Biographies

  • Veronika D. Zavalnaya, Pacific State Medical University

    5th grade Student

  • Evgeniy K. Papynov, Far Eastern Federal University

    Candidate of Chemical Sciences, Head of Laboratory of Nuclear Technologies, Institute of Science-Intensive Technologies and Advanced Materials

  • Ekaterina V. Eliseeva, Pacific State Medical University

    Doctor of Medical Sciences, Head Department of General and Clinical Pharmacology

  • Vladimir I. Apanasevich, Pacific State Medical University

    Doctor of Medical Sciences, Professor Institute of Surgery

  • Ilya O. Resnichek, Pacific State Medical University

    Аssistant Department of Pathological Anatomy and Forensic Medicine

  • Evgeniy A. Kotsyurbiy, Pacific State Medical University

    Сandidate of Medical Sciences, Head Department of Pathological Anatomy and Forensic Medicine

  • Anna V. Ovodova, Primorsky Regional Oncology Dispensary

    Oncologist

  • Anna D. Zakharchenko, Pacific State Medical University

    5th grade Student

  • Vladislava N. Goga, Pacific State Medical University

    5th grade Student

  • Oleg O. Shichalin, Far Eastern Federal University

    Candidate of Chemical Sciences, Researcher, Laboratory of  Nuclear Technologies, Institute of Science-Intensive Technologies and Advanced Materials

References

1. Sung H., Ferlay J., Siegel R.L., Laversanne M., Soerjomataram I., Jemal A., Bray F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: a Cancer Journal for Clinicians, 2021, vol. 71, no. 3, pp. 209–249. DOI: https://doi.org/10.3322/caac.21660

2. Nygren P. What is cancer chemotherapy? Acta Oncologica, 2001, vol. 40, no. 2–3, pp. 166–174. DOI: https://doi.org/10.1080/02841860151116204

3. DelaFlor-Weiss E., Uziely B., Muggia F. M. Protracted drug infusions in cancer treatment: an appraisal of 5-fluorouracil, doxorubicin, and platinums. Annals of Oncology, 1993, vol. 4, no. 9, pp. 723–733. DOI: https://doi.org/10.1093/oxfordjournals.annonc.a058656

4. Ajani J.A., Ryan B., Rich T.A., McMurtrey M., Roth J.A., DeCaro L., Levin B., Mountain C.Prolonged chemotherapy for localised squamous carcinoma of the oesophagus. European Journal of Cancer, 1992, vol. 28, no. 4–5, pp. 880–884. DOI: https://doi.org/10.1016/0959-8049(92)90140-W

5. Merajver S.D., Weber B.L., Cody R., Zhang D., Strawderman M., Calzone K.A., LeClaire V., Levin A., Irani J., Halvie M., August D., Wicha M., Lichter A., Pierce L.J. Breast conservation and prolonged chemotherapy for locally advanced breast cancer: the University of Michigan experience. Journal of Clinical Oncology, 1997, vol. 15, no. 8, pp. 2873–2881. DOI: https://doi.org/10.1200/JCO.1997.15.8.2873

6. Piedbois P., Rougier P., Buyse M., Pignon J., Ryan L., Hansen R., Zee B., Weinerman B., Pater J., Leichman C., Macdonald J., Benedetti J., Lokich J., Fryer J., Brufman G., Isacson R., Laplanche A., Levy E. Efficacy of intravenous continuous infusion of fluorouracil compared with bolus administration in advanced colorectal cancer. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology, 1998, vol. 16, no. 1, pp. 301–308. DOI: https://doi.org/10.1200/jco.1998.16.1.30

7. Leichman C.G., Leichman L., Spears C.P., Rosen P.J., Jeffers S., Groshen S. Prolonged con-tinuous infusion of fluorouracil with weekly bolus leucovorin: a phase II study in patients with disseminated colorectal cancer. JNCI: Journal of the National Cancer Institute, 1993, vol. 85, no. 1, pp. 41–44. DOI: https://doi.org/10.1093/jnci/85.1.41

8. Console G., Calabrò C., Nardulli P., Digiuseppe F., Rucci A., Russo P., Geppetti P. Clinical and economic effects of central venous catheters on oncology patient care. Journal of Chemo-therapy, 2007, vol. 19, no. 3, pp. 309–314. DOI: https://doi.org/10.1179/joc.2007.19.3.309

9. Tsutsumi S., Fukasawa T., Fujii T., Tabe Y., Kigure W., Asao T., Kuwano H. Central venous port system-related complications in outpatient chemotherapy for colorectal cancer. Hepato-Gastroenterology, 2012, vol. 59, no. 116, pp. 1079–1080. DOI: https://doi.org/10.5754/hge09283

10. Ahmed K.K., Tamer M.A., Ghareeb M.M., Salem A.K. Recent advances in polymeric im-plants. AAPS PharmSciTech., 2019, vol. 20, no. 7. art. 300. DOI: https://doi.org/10.1208/s12249-019-1510-0

11. Glaser R.L., York A.E., Dimitrakakis C. Subcutaneous testosterone-letrozole therapy before and concurrent with neoadjuvant breast chemotherapy: clinical response and therapeutic im-plications. Menopause, 2017, vol. 24, no. 7, pp. 859–864. DOI: https://doi.org/10.1097/GME.0000000000000828

12. Lu S., Neoh K.G., Huang C., Shi Z., Kang E.T. Polyacrylamide hybrid nanogels for targeted cancer chemotherapy via co-delivery of gold nanoparticles and MTX. Journal of Colloid and Interface Science, 2013, vol. 412, pp. 46–55. DOI: https://doi.org/10.1016/j.jcis.2013.09.011

13. Barman R., Bej R., Dey P., Ghosh S. Cisplatin-conjugated polyurethane capsule for dual drug delivery to a cancer cell. ACS Applied Materials & Interfaces, 2023, vol. 15, no. 21, pp. 25193–25200. DOI: https://doi.org/10.1021/acsami.2c22146

14. Cheng X., Kuhn L. Chemotherapy drug delivery from calcium phosphate nanoparticles. Inter-national Journal of Nanomedicine, 2007, vol. 2, no. 4, pp. 667–674. DOI: https://doi.org/10.2147/IJN.S2.4.667

15. Zhu Y.J., Guo X.X., Sham T.K. Calcium silicate-based drug delivery systems. Expert Opinion on Drug Delivery, 2017, vol. 14, no. 2, pp. 215–228. DOI: https://doi.org/10.1080/17425247.2016.1214566

16. Block J.E., Thorn M.R. Clinical indications of calcium-phosphate biomaterials and related composites for orthopedic procedures. Calcified Tissue International, 2000, vol. 66, no. 3, pp. 234–238. DOI: https://doi.org/10.1007/PL00005839

17. Singh D., Singh S., Sahu J., Srivastava S., Singh M.R. Ceramic nanoparticles: Recompense, cel-lular uptake and toxicity concerns. Artificial Cells, Nanomedicine and Biotechnology, 2016, vol. 44, no. 1, pp. 401–409. DOI: https://doi.org/10.3109/21691401.2014.955106

18. Papynov E.K., Shichalin O.O., Kapustina O.V., Buravlev I.Y., Apanasevich V.I., Mayorov V.Y., Fedorets A.N., Lembikov A.O., Gritsuk D.N., Ovodova A.V., Gribanova S.S., Kornako-va Z.E., Shapkin N.P. Synthetic calcium silicate biocomposite based on sea urchin skeleton for 5-fluorouracil cancer delivery. Materials, 2023, vol. 16, no. 9, art. 3495. DOI: https://doi.org/10.3390/ma16093495

Downloads

Published

2025-06-11

Issue

Section

ONCOLOGY, RADIATION THERAPY

How to Cite

Modeling of prolonged 5-fluorouracil chemotherapy using a subcutaneous ceramic system in the experiment. (2025). Clinical and Fundamental Medicine, 1(2), 25-33. https://journals.dvfu.ru/clinfundmed/article/view/1537

Most read articles by the same author(s)