Design of the composition of hydraulic concrete taking into account its life cycle
DOI:
https://doi.org/10.24866/2227-6858/2025-2/143-156Keywords:
concrete composition, hydraulic concrete, life cycleAbstract
The life cycle of a capital construction project is considered as an integrated closed system that helps solve such construction industry problems as time and cost overruns, productivity limitations, and labor shortages. Of particular complexity is the integrated design of the material composition for special structures taking into account its life cycle. The following raw materials were used to conduct experimental studies to select the optimal concrete composition: sulfate-resistant cement grade CEM I 42.5 CC, crushed stone of fractions 5–10 mm and 10–20 mm, sand, water, superplasticizers Sika Plast-2500 LFC and Sika ViscoCreete 5-600-SK, air-entraining additive SikaControl-95 Aer, nanosilica. Concretes for different types of hydraulic structures (gravity-type platforms and dry docks) are calculated using different combinations of selection for each of the concrete classes (use of concrete of one, two, three or more classes). Despite the economic benefit in this application of three concrete classes, the choice of concrete classes C40 and C45 is a more advantageous optimal-technological option, since the quality level of the structure with this selection is higher. At the same time, the efficiency of concrete increases when closing their life cycle such reusing concrete scrap.
Possible ways to improve the properties of concrete using secondary fillers are the use of thermal and moisture curing, the use of pozzolanic materials, etc. To reduce the negative impact on the strength of the composite, it is necessary to determine the chemical impurities in the materials used based on concrete scrap.
References
1. Datta Dip S., Islam M., Sobuz Rahman Md. H., Ahmed S., Kar M. Artificial intelligence and machine learning applications in the project lifecycle of the construction industry: A comprehensive review // Heliyon. 2024. Vol. 10, Iss. 5. P. e26888. DOI: https://doi.org//10.1016/j.heliyon.2024.e26888.
2. Waqar A., Houda M., Ahsan M., Nisar S. Enhancing project performance through sustainable supply chain management: A comprehensive analysis of residential construction practices // Environmental Challenges. 2025. Vol. 18. P. 101075. DOI: https://doi.org//10.1016/j.envc.2024.101075.
3. Yuan L., Yang B., Lu W., Peng Z. Carbon footprint accounting across the construction waste lifecycle: A critical review of research // Environmental Impact Assessment Review. 2024. Vol. 107. P. 107551. DOI: https://doi.org//10.1016/j.eiar.2024.107551.
4. León-Romero L.P., Aguilar-Fernández M., Luque-Sendra A., Zamora-Polo F., Francisco-Márquez M. Characterization of the information system integrated to the construction project management systems // Heliyon. 2024. Vol. 10, Iss. 11. P. e31886. DOI: https://doi.org//10.1016/j.heliyon.2024.e31886.
5. Celik Y., Petri I., Rezgui Y. Integrating BIM and Blockchain across construction lifecycle and supply chains // Computers in Industry. 2023. Vol. 148. P. 103886. DOI: https://doi.org//10.1016/j.compind.2023.103886.
6. Larbi Amo J., Tang L.C.M., Larbi Amo R., Abankwa D.A., Danquah Darko R. Developing an integrated digital delivery framework and workflow guideline for construction safety management in a project delivery system // Safety Science. 2024. Vol. 175. P. 106486. DOI: https://doi.org//10.1016/j.ssci.2024.106486.
7. Ninan J., Yadav R. Megaproject and the city: Theorizing social media discourses across the lifecycle of an infrastructure project // City and Environment Interactions. 2023. Vol. 20. P. 100123. DOI: https://doi.org//10.1016/j.cacint.2023.100123.
8. Abuhussain Awad M., Waqar A., Khan Mateen A., Othman I., Alotaibi Saad B., Althoey F., Abuhussain M. Integrating Building Information Modeling (BIM) for optimal lifecycle management of complex structures // Structures. 2024. Vol. 60. P. 105831. DOI: https://doi.org//10.1016/j.istruc.2023.105831.
9. Saradara Mohamed S., Khalfan Ali M.M., Jaya Venu S., Swarnakar V., Rauf A., Fadel M. El. Advancing building construction: A novel conceptual framework integrating circularity with modified lean project delivery systems // Developments in the Built Environment. 2024. Vol. 20. P. 100531. DOI: https://doi.org//10.1016/j.dibe.2024.100531.
10. Adu-Amankwa N.A.N., Rahimian F. Pour, Dawood N., Park C. Digital Twins and Blockchain technologies for building lifecycle management // Automation in Construction. 2023. Vol. 155. P. 105064. DOI: https://doi.org//10.1016/j.autcon.2023.105064.
11. Huaizhi Su, Nan Zhang, Hao Li. Concrete piezoceramic smart module pairs-based damage diagnosis of hydraulic structure // Composite Structures. 2018. Vol. 183. P. 582–593. DOI: https://doi.org//10.1016/j.compstruct.2017.07.010
12. Flavien Vulliet, Mahdi Ben Ftima, Pierre Léger. Stability of cracked concrete hydraulic structures by nonlinear quasi-static explicit finite element and 3D limit equilibrium methods // Computers & Structures. 2017. Vol. 184. P. 25–35. DOI: https://doi.org//10.1016/j.compstruc.2017.02.007
13. Shenhua Liu, Weizhong Chen, Jingqiang Yuan. A coupled hydraulic-mechanical-chemical peridynamic model for simulating corrosion-induced failure of unsaturated reinforced concrete under hydraulic pressure // Engineering Analysis with Boundary Elements. 2025. Vol. 174. P. 106177. DOI: https://doi.org//10.1016/j.enganabound.2025.106177
14. Liu Zimei, Ge Xueliang, Lu Cairong, Zhang Zhengnan, Duan Yuwei, Jiang Yuanyuan. A novel damage constitutive model for high air-content hydraulic concrete in ultra-low temperature freeze-thaw and load coupling // Journal of Building Engineering. 2025. Vol. 104. P. 112385. DOI: https://doi.org//10.1016/j.jobe.2025.112385
15. Chi Zhang, Shuaixiao Gao, Ye Wang, Xin Zhang, Hongqiang Chu, Huajie Huang, Fanrun Huang, Hainan Wu, Xinyan Xiong. A novel metal-free fluorine-free self-cleaning coating with photocata-lytic activity and superhydrophobicity based on RP/HTCC@PDMS for hydraulic concrete // Separation and Purification Technology. 2025. Vol. 363, Part 2. P. 132142. DOI: https://doi.org//10.1016/j.seppur.2025.132142
16. Jie-jing Chen, Khant Swe Hein, Guanghua Lyu, Long Xiao, Wei-Liang Jin, Jin Xia. Influence of frequency condition of dynamic hydraulic pressure on chloride transport in concrete // Construction and Building Materials. 2025. Vol. 458. P. 139529. DOI: https://doi.org//10.1016/j.conbuildmat.2024.139529
17. Shaolun He, Jing Cao, Junrui Chai, Yi Yang, Shuai Liu, Yuan Qin, Zengguang Xu. Meso-damage of concrete hydraulic fracturing considering the temperature difference effect // Construction and Building Materials. 2024. Vol. 456. P. 139203. DOI: https://doi.org//10.1016/j.conbuildmat.2024.139203
18. Zimei Liu, Xueliang Ge, Cairong Lu, Zhengnan Zhang, Yuwei Duan, Yuanyuan Jiang. Performance evolution and damage constitutive model of high air content hydraulic concrete coupled freeze-thaw and loads // Construction and Building Materials. 2024. Vol. 453. P. 139015. DOI: https://doi.org//10.1016/j.conbuildmat.2024.139015
19. Riccardo Stucchi. Hydromechanical behaviour of reinforced concrete linings in hydraulic tunnels: transient // Proceedings of the Institution of Civil Engineers – Engineering and Computational Mechanics. 2025. Vol. 178, Iss. 1. P. 13–22. DOI: https://doi.org//10.1680/jencm.24.00067
20. Mingyue Chen, Xin Kang, Yongqing Chen, Renpeng Chen. Unveiling the synergistic effects of stray current and high hydraulic pressure on chloride transport in ultra-high-performance concrete // Cement and Concrete Composites. 2025. Vol. 157. P. 105957. DOI: https://doi.org//10.1016/j.cemconcomp.2025.105957
21. Jian-Tao Wang, Kai-Lin Yang, Yang Yang. Influence of internal and external hydraulic pressures on torsional resistance of steel-concrete double skin composite tubes // International Journal of Pressure Vessels and Piping. 2025. Vol. 214. P. 105424. DOI: https://doi.org//10.1016/j.ijpvp.2024.105424
22. Jin Xia, Jie-jing Chen, Xiaoyu He, Keyu Chen, Wei-liang Jin. Comparative analysis of micro-damage-affected chloride transport in concrete under static and dynamic hydraulic pressure // Journal of Building Engineering. 2024. Vol. 95. P. 110184. DOI: https://doi.org//10.1016/j.jobe.2024.110184
23. Zhe Huang, Jiazhang Cao, Fuyuan Gong, Ding Nie, Wenwei Li, Peng Lin, He Zhang. Multi-scale thermo-poro-mechanical simulation of the frost resistance of low-heat and moderate-heat hydrau-lic concrete considering the aging microstructure // Construction and Building Materials. 2024. Vol. 453. P. 139062. DOI: https://doi.org//10.1016/j.conbuildmat.2024.139062
24. Yanlong Li, Yaofei Liu, Hanyu Guo, Yang Li. Investigation of the freeze-thaw deterioration behavior of hydraulic concrete under various curing temperatures // Journal of Building Engineering. 2024. Vol. 95. P. 110247. DOI: https://doi.org//10.1016/j.jobe.2024.110247
25. Riccardo Stucchi. Hydro-mechanical behaviour of reinforced concrete linings in hydraulic tunnels: steady state // Proceedings of the Institution of Civil Engineers – Engineering and Computational Mechanics. Vol. 177, Iss. 3–4. P. 70–82. DOI: https://doi.org//10.1680/jencm.24.00020
26. Kun Wang, Jinjun Guo, Juan Wang, Yuanxun Zheng, Peng Zhang, Hongjian Du. Numerical and experimental analysis of the effect of multi-ion electrical coupling on the sulfate convection zone in hydraulic concrete // Construction and Building Materials. 2024. Vol. 449. P. 138340. DOI: https://doi.org//10.1016/j.conbuildmat.2024.138340
27. Jie-jing Chen, Qing-feng Liu, Wei-liang Jin, Jin Xia. Experiment and simulation on the coupled effects of calcium leaching and chloride transport in concrete under hydraulic pressure // Cement and Concrete Composites. 2025. Vol. 155. P. 105834. DOI: https://doi.org//10.1016/j.cemconcomp.2024.105834
28. Павленко А.Д., Ким Л.В. Применение лёгкого бетона в гидротехническом строительстве в условиях Крайнего Севера // Трибуна учёного. 2024. Вып. 5. С. 1–5.
29. Алексейко Л.Н., Таскин А.В. О комплексной переработке золошлаковых отходов энергетики // Экология и развитие общества. Труды IX Международной конференции. Международная академия наук экологии, безопасности человека и природы (МАНЭБ). 2005. С. 12–21.
30. Алексейко Л.Н., Таскин А.В., Черепанов А.А. Технологическая линия для переработки золошлаковых отходов – продуктов сжигания угольного топлива // Патент на изобретение RU 2489214 C1, 10.08.2013. Заявка № 2012123064/03 от 04.06.2012.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Far Eastern Federal University: School of Engineering Bulletin

This work is licensed under a Creative Commons Attribution 4.0 International License.