Structures using honeycomb structures

Authors

DOI:

https://doi.org/10.24866/2227-6858/2025-2/94-104

Keywords:

honeycomb structures, honeycombs, cellular structures, building structures, composite panels, strength, stability

Abstract

Innovative honeycomb structures have attracted significant attention from researchers in recent years due to their unique mechanical properties and special characteristics. The article presents key foreign publications containing striking examples of research in the field of honeycomb structures, and provides a fairly broad overview of achievements in the development of innovative honeycomb structures over the past twenty years, covering the topics of filling, integration, structures with a negative Poisson ratio, etc. It examines the main mechanical properties of these structures, identifies their strengths and weaknesses based on geometry, mechanical parameters, and dynamic responses. Analysis of literature sources has highlighted current challenges and outlined potential directions for future research. The conclusions offer valuable recommendations for further investigation and design of lightweight, robust span structures using cellular configurations.To deepen understanding of the behavior of cellular structures, additional studies are needed on analogous elements and full-scale structural samples.

Author Biographies

  • Ivan L. Shipelev, Pacific National University

    Postgraduate Student, Senior Lecturer, of the High School of Industrial and Civil Construction

  • Nikolay L. Tishkov, Pacific National University

    Candidate of Technical Sciences, Associate Professor, Associate Professor of the High School of Industrial and Civil Construction

References

1. Руденко М.С., Михеев А.Е., Гирн А.В. Технология изготовления сотовых заполнителей из полимерных композиционных материалов // Сибирский аэрокосмический журнал. 2021. Т. 22, № 2. С. 391–397. DOI: https://doi.org/10.31772/2712-8970-2021-22-2-391-397

2. Иванов А.А., Гофин М.Я. Механика сотовых заполнителей. Т. 1. Московский лесотехнический институт, 1989. 315 с.

3. Берсудский В.Е., Крысин В.Н., Лесных С.И. Технология изготовления сотовых авиационных конструкций. М.: Машиностроение, 1975. 296 с.

4. Благов В.А., Калмачков А.Н., Кобелев В.Н., Прохоров Б.Ф. Лёгкие судовые конструкции из пластмасс. Л.: Судостроение, 1969. 264 с.

5. Першин. А.М. Расчётное исследование статической устойчивости сотовых заполнителей из композиционных материалов // Вестник Самарского государственного аэрокосмического университета. 2014. № 5(47). Часть 1. С. 118–123.

6. Yang X., Sun Y., Yang J., Pan Q. Out-of-plane crashworthiness analysis of bio-inspired aluminum honeycomb patterned with horseshoe mesostructured // Thin-Walled Struct. 2018.

7. Hong S., Pan J., Tyan T., Prasad P. Quasi-static crush behavior of aluminum honeycomb specimens under compression dominant combined loads // Int. J Plast. 2006. Р. 73–109.

8. Dharmasena K.P., Wadley H.N.G., Xue Z., Hutchinso J.W. Mechanical response of metallic honeycomb sandwich panel structures to high-intensity dynamic loading // Int. J Impact Eng. 2008. № 35. Р. 1066–1075.

9. Shahdin A., Mezeix L., Bouvet C., Morlier J., Gourinat Y. Fabrication and mechanical testing of glass fiber entangled sandwich beams: a comparison with honeycomb and foam sandwich beams // Composite Structures. 2009. P. 404–412.

10. Garam K., Ronald S., Waterloo T. Investigating the effects of fluid intrusion on Nomex ho-neycomb sandwich structures with carbon fiber facesheets // Composite Structures. 2018. № 206. P. 535–549.

11. Chen Z., Yan N. Investigation of elastic moduli of Kraft paper honeycomb core sandwich panels // Compos B Eng. 2012. № 43. P. 2107–2114.

12. Wang Q., Li Z., Zhang Y., Cui S., Yang Z., Lu Z. Ultra-low density architectured metamaterial with superior mechanical properties and energy absorption capability // Compos. B Eng. 2020. P. 202–215.

13. Okumura D., Ohno N., Noguchi H. Post-buckling analysis of elastic honeycombs subject to in-plane biaxial compression // Int J Solids Struct. 2002. № 39. P. 3487–3503.

14. Jang W.Y., Kyriakides S. On the buckling and crushing of expanded honeycomb // Int J Mech Sci. 2015. № 91. P. 81–90.

15. Abbadi A., Azari Z., Belouettar S., Gilgert G., Freres P. Modelling the fatigue behavior of composites honeycomb materials (aluminium/aramide fibre core) using four-point bending tests // Int J Fatigue. 2010. № 32. P. 1739–1747.

16. Yeh C.L., Chen Y.F., Wen C.Y., Li K.T. Measurement of thermal contact resistance of aluminum honeycombs // Exp Therm Fluid Sci. 2003. № 27. P. 27–281.

17. Ng C.F., Hui C.K. Low frequency sound insulation using stiffness control with honeycomb panels // Appl Acoust. 2008. № 69. P. 293–301.

18. Ruan D., Lu G., Wang B., Yu T. In-plane dynamic crushing of honeycombs – a finite element study // Int J Impact Eng. 2003. № 28. P. 161–182.

19. Cricrì G., Perrella M., Calì C. Honeycomb failure processes under in-plane loading // Compos Part B. 2013. № 45. P. 1079–1090.

20. Hua L., You F., Yu T. Effect of cell-wall angle on the in-plane crushing behaviour of hexagonal honeycombs // Mater Des. 2013. № 46. P. 511–523.

21. Khan M.K., Baig T., Mirza S. Experimental investigation of in-plane and out-of-plane crushing of aluminum honeycomb // Mat Sci Eng A-Struct. 2012. № 539. P. 135–142.

22. Besant T., Davies G.A.O., Hitchings D. Finite element modeling of low velocity impact of composite sandwich panels // Compos Part A-Appl S. 2001. № 32. P. 1189–1196.

23. Buitrago B.L., Santiuste C., Sánchez-Sáez S., Barbero E., Navarro C. Modelling of composite sandwich structures with honeycomb core subjected to high-velocity impact // Composite Structures. 2010. № 92. P. 2090–2096.

24. He L., Yuan-Sheng Ch., Liu J. Precise bending stress analysis of corrugatedcore, honeycomb-core and X-core sandwich panels // Composite Structures. 2012. № 94. P. 1656–1668.

25. Santosa S., Wierzbicki T. Effect of an ultralight metal filler on the bending collapse behavior of thin-walled prismatic columns // Int J Mech Sci. 1999. № 41. P. 995–1019.

26. Zhou Q., Mayer R.R. Characterization of aluminum honeycomb material failure in large deformation compression, shear, and tearing // J Eng Mater-T Asme. 2002. № 124. P. 412–420.

27. Pan S.D., Wu L.Z., Sun Y.G., Zhou Z., Qu J. Longitudinal shear strength and failure process of honeycomb cores // Composite Structures. 2006. № 72. P. 42–46.

28. Montazeri А., Saeedi А., Bahmanpour E. Enhancing the compressive properties of re-entrant honeycombs by line defects with insight from nature // Materials Today Communications. 2024. № 38. P. 700–713.

29. Lu G.X., Yu T.X. Energy absorption of structures and materials // Cambridge: Woodhead Publishing. 2001. Vol. 1. 402 p.

30. Yamashita M., Gotoh M. Impact behavior of honeycomb structures with various cell specifications–numerical simulation and experiment // Int J Impact Eng. 2005. № 32. P. 618–630.

31. Meran A.P., Toprak T., Muğan A. Numerical and experimental study of crashworthiness parameters of honeycomb structures // Thin-Walled Struct. 2014. № 78. P. 87–94.

32. Habib F.N., Iovenitti P., Masood S.H., Nikzad M. Cell geometry effect on in-plane energy absorption of periodic honeycomb structures // Int J Adv Manuf Technol. 2018. № 94. P. 2369–2380.

33. Wierzbicki T. Crushing analysis of metal honeycombs // Int J Impact Eng. 1983. № 1. P. 157–174.

34. Xu F., Qiao P. Homogenized elastic properties of honeycomb sandwich with skin effect // Int J Solids Struct. 2002. № 39. P. 2153–2188.

35. Catapano A., Montemurro M. A multi-scale approach for the optimum design of sandwich plates with honeycomb core. Part I: Нomogenisation of core properties // Composite Structures. 2014. № 118. P. 677–690.

36. Li Y.M., Hoang M.P., Abbes B., Abbes F., Guo Y.Q. Analytical homogenization for stretch and bending of honeycomb sandwich plates with skin and height effects // Composite Structures. 2015. Vol. 120. P. 406–416.

37. Shi G., Tong P. Equivalent transverse shear stiffness of honeycomb cores // Int J Solids Struct. 1995. № 32. P. 1383–1393.

38. Niknejad A., Abedi M.M., Liaghat G.H., Nejad M.Z. Prediction of the mean folding force during the axial compression in foam-filled grooved tubes by theoretical analysis // Mater Des. 2012. № 37. P. 144–151.

39. Güden M., Kavi H. Quasi-static axial compression behavior of constraint hexagonal and square-packed empty and aluminum foam-filled aluminum multi-tubes // Thin-Walled Struct. 2006. № 44. P. 739–750.

40. Lin J.S., Wang X., Lu G. Crushing characteristics of fiber reinforced conical tubes with foam-filler // Composite Structures. 2014. № 116. P. 18–28.

41. Zhu G., Li S., Sun G., Li G., Li Q. On design of graded honeycomb filler and tubal wall thickness for multiple load cases // Thin-Walled Struct. 2016. № 109. P. 377–389.

42. Wang Chengjian, Wang Cheng, Li Z., He Y., Zhang Z., Zhang Y. Mechanical properties of novel 3D printing 316L stainless steel honeycomb structure reinforced aluminum matrix composites // Intermetallics. 2025. № 181. P. 743–753.

43. Prawoto Y. Seeing auxetic materials from the mechanics point of view: a structural review on the negative Poisson's ratio // Comput Mater Sci. 2012. № 58. P. 140–153.

44. Zied K., Osman M., Elmahdy T. Enhancement of the in-plane stiffness of the hexagonal re-entrant auxetic honeycomb cores // Phys Status Solidi B. 2015. № 252. P. 2685–2692.

Downloads

Published

2025-06-30

Issue

Section

Buildings and Structures

How to Cite

1.
Structures using honeycomb structures. Вестник Инженерной школы ДВФУ [Internet]. 2025 Jun. 30 [cited 2025 Jul. 1];2(2(63):94-104. Available from: https://journals.dvfu.ru/vis/article/view/1713