Evaluation of fuel combustion characteristics in the marine diesel engine cylinder
DOI:
https://doi.org/10.24866/2227-6858/2025-1/105-113Keywords:
marine diesel engine, thermodynamic process, heat transfer, fuel combustion, combustion chamberAbstract
The characteristics of fuel combustion processes have a significant impact on the external performance of marine diesel engines. The lack of widely applicable methods for analyzing thermodynamic processes occurring in the cylinders of thermal engines does not fully reveal the possibilities of modernization and organization of technical monitoring of internal combustion engines. The purpose of this work is to justify the theoretical prerequisites for the analysis of the dependence of the characteristics of heat generation during fuel combustion on the angular velocity of the crankshaft, based on the analysis of indicator charts. Equations forming the basis of fuel combustion processes modeling are presented, the practical application of which can be useful in designing and monitoring the technical condition of marine engines. In contrast to traditional approaches, the paper proposes the representation of the space between the piston bottom and the upper part of the combustion chamber in the form of a slot channel and modeling of thermodynamic processes in the form of heat transfer by heat conduction and convection through the wall of the combustion chamber. Formula allowing to calculate amount of heat transferred to walls of combustion chamber and walls of cylinder bushing at movement of piston and at corresponding angle of crankshaft turn is presented. Using mathematical methods of estimating the amount of heat transfer through the walls of the combustion chamber, it is possible to determine the values of a reasonable ratio between the calculated heat generated during combustion and the chemical energy of fuel entering the engine cylinder in each cycle, as well as to assess the technical condition of the ship's power plant.
References
1. Глушков С.П., Косенко Д.Ю., Кочергин В.И., Красников В.В. Влияние кинетики горения топлива на параметры неравномерности вращения судовых энергетических установок // Морские интеллектуальные технологии. 2017. № 2–2. С. 35–41.
2. Лыонг Х.К., Дорохов А.Ф., Апкаров И.А. Исследование характеристик тепловыделения судового двигателя внутреннего сгорания при дизельном и газодизельном рабочем процессе по экспериментальной индикаторной диаграмме // Вестник АГТУ. Серия «Морская техника и технология». 2014. № 1. С. 67–76.
3. Лебедев Б.О., Глушков С.П., Кочергин В.И. Особенности использования альтернативных видов топлива для судовых энергетических установок // Морские интеллектуальные технологии. 2018. № 4–4(42). С. 139–143.
4. David Svída M.Sc. Thermodynamic Analysis of Internal Combustion Engine // Recent Advances in Mechatronics. January 2007. P. 566–570. DOI: https://doi.org/10.1007/978-3-540-73956-2_11.1
5. Mauro S. Internal combustion engine heat release calculation using single-zone and CFD 3D numerical models // International Journal of Energy and Environmental Engineering. January 2007. № 9(4–6). P. 566–570. DOI: https://doi.org/10.1007/s40095-018-0265-9
6. Ikpe A.E., Ikechukwu O. Modelling the performance characteristics of four stroke internal combustion renault engine cycle using Matlab simulation tool // Arid Zone Journal of Engineering, Technjology and Environment. June 2022. P. 267–280.
7. Vlase S., Marin M., Elkhalfi A., Ailawalia P. Mathematical model for dynamic analysis of internal combustion engines // Journal of Computational Applied Mechanics. 2022. № 54(4). P. 607–622. DOI: https://doi.org/10.22059/jcamech.2023.367595.897
8. Кочергин В.И., Глушков С.П., Зинченко Е.С. Использование характеристик термодинамических процессов для оценки технического состояния дизельных энергетическких установок // Вестник ГУМРФ имени адмирала С.О. Макарова. 2024. Т. 16, № 1. С. 141–153. DOI: https://doi.org/10.21821/2309-5180-2024-16-1-141-153
9. Ерофеев В.Л., Жуков В.А., Пряхин А.С. Энергетический и эксергетический подходы к оценке повышения эффективности тепловых двигателей // Вестник ГУМРФ имени адмирала С.О. Макарова. 2017. Т. 9, № 5. С. 1017–1026. DOI: https://doi.org/10.21821/2309-5180-2017-9-5-1017-1026
10. Menacer B., Bouchetara M. Thermodynamic analysis of a turbocharged diesel engine operating under steady state condition // Journal of Applied Fluid Mechanics. 2016. № 9(2). P. 573–585. DOI: https://doi.org/10.18869/acadpub.jafm.68.225.24661
11. Товбин Ю.К. Второе начало термодинамики, термодинамика Гиббса и времена релаксации термодинамических параметров // Журнал физической химии. 2021. Т. 95, № 4. С. 483–507.
12. Расторгуева О.В., Седельников Д.О. Исследование проблем теплопередачи в двигателях внутреннего сгорания опасных производственных объектов // Вестник ПНИПУ. Безопасность и управление рисками. 2016. № 5. С. 62–70.
13. Zak Z., Emrich M., Takats M., Macek J. In-cylinder heat transfer modelling // MECCA Journal of Middle European Construction and Design of Cars. 2016. № 14(3). P. 2–10. DOI: https://doi.org/10.1515/mecdc-2016-0009
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Far Eastern Federal University: School of Engineering Bulletin

This work is licensed under a Creative Commons Attribution 4.0 International License.