Automation of the doping process of silicide-containing samples

Authors

DOI:

https://doi.org/10.24866/2227-6858/2025-2/3-14

Keywords:

vacuum systems, semiconductors, resistive evaporator, alloying, precision masks

Abstract

The paper presents the result of automating the process of alloying silicide-containing samples based on a developed prototype device that allows for stepwise alloying, as well as performing precise positioning of masks relative to the sample and changing them depending on the rate of sublimation of the alloying additive from a resistive evaporator. The prototype was developed based on the modernization of a previously manufactured laboratory sample of the device (Rospatent application No. 2024135444 dated 11.27.2024). The modernization elements include: changing the geometry and location of the resistive evaporator, as well as the method of transferring rotation from the drive shaft to the shaft of the carriage with masks.

Author Biographies

  • Dmitry V. Fomin, Amur State University

    Candidate of Physical and Mathematical Sciences, Associate Professor, Director of the Scientific and Educational Center named after K.E. Tsiolkovsky

  • Ilya A. Ryabov, Amur State University

    Laboratory Assistant

  • Ilya O. Sholygin, Amur State University

    Master's student of 2 years of study

  • Alexey V. Polyakov, Amur State University

    Junior Scientific Assistant

References

1. Дубов В.Л., Фомин Д.В., Галкин Н.Г. Твёрдофазный рост и структура плёнок дисилицида бария на Si(111) // Вестник Самарского государственного аэрокосмического университета им. академика С.П. Королёва (Национального исследовательского университета). 2016. Т. 15, № 2. С. 114–121. DOI: https://doi.org/10.18287/2412-7329-2016-15-2-114-121

2. Патент 2709280 C1 Российская Федерация, МПК B25J 21/00. Манипулятор, работающий в герметизированном объёме / А.А. Никитин: № 2019111550 : заявл. 16.04.2019 : опубл. 17.12.2019. EDN: VYXLRU

3. Brinkevich D., Volobuev V., Lukashevich M.G. [et al.]. Structure and electron-transport properties of photoresist implanted by Sb+Ions // Acta Physica Polonica A. 2011. Vol. 120, № 1. P. 46–48. DOI: https://doi.org//10.12693/APhysPolA.120.46

4. Galkin N.G., Goroshko D.L., Dubov V.L., Fomin D.V., Galkin K.N., Chusovitin E.A., Chusovitina S.V. SPE grown BaSi2 on Si(111) substrates: Optical and photoelectric properties of films and diode heterostructures on their base // Japanese Journal of Applied Physics. 2020. Vol. 59. № SF. Art. SFFA11. DOI: https://doi.org//10.35848/1347-4065/ab6b76

5. Galkin N.G., Fomin D.V., Dubov V.L., Galkin K.N., Pyachin S.A., Burkov A.A. Comparison of crystal and phonon structures for polycrystalline BaSi2Films grown by SPE method on Si(111) substrate // Defect and Diffusion Forum. 2018. № 386. P. 48–54. EDN: VHAZUA

6. Кесарев А.Г., Кондратьев В.В., Ломаев И.Л. К теории атомной диффузии после ионной имплантации // Физика металлов и металловедение. 2018. Т. 119, № 11. С. 1160–1165.

7. Ремнев Г.Е., Тарбоков В.А., Павлов С.К. Модифицирование материалов при воздействии мощных ионных пучков // Физика и химия обработки материалов. 2021. № 2. С. 5–26. DOI: https://doi.org/10.30791/0015-3214-2021-2-5-26

8. Козлов А.Г., Кривозубов О.В., Удод А.Н. Тонкие плёнки твёрдого протонопроводящего электролита на основе оксидов бария и церия // Вестник Омского университета. 2013. № 2(68). С. 70–74. EDN: RRQMRP

9. Krioni N.K., Mingazheva A.A., Mingazhev A.D. Increasing the wear pesistance of machine parts made of aluminum alloys by ion nitriding with high-energy activation // Journal of Friction and Wear. 2024. Vol. 45, № 1. P. 45–49. DOI: ttps://doi.org//10.3103/S1068366624700077

10. Uglov V.V., Cherenda N.N., Khodasevich V.V. [et al.]. Formation of complex Al-N-C layer in aluminium by successive carbon and nitrogen implantation // Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms. 1999. Vol. 147, № 1-4. P. 332–336. DOI: https://doi.org//10.1016/S0168-583X(98)00592-8

11. Komarov F.F., Mil'chanin O.V., Parchomenko I.N. [et al.]. Influence of the laser pulse annealing of the silicon implanted with indium and arsenic ions on its optical and structural properties // Journal of Engineering Physics and Thermophysics. 2024. Vol. 97, № 3. P. 745–752. DOI: https://doi.org//10.1007/s10891-024-02946-7

12. Romanov I., Parkhomenko I., Vlasukova L. [et al.]. Fluence effect on photo- and electroluminescence of silica layers implanted with Sn+ ions // Materials Letters. 2022. Vol. 308. Art. 131070. DOI: https://doi.org//10.1016/j.matlet.2021.131070

13. Filintoglou K., Pinakidou F., Arvanitidis J. [et al.]. Size control of GaN nanocrystals formed by ion implantation in thermally grown silicon dioxide // Journal of Applied Physics. 2020. Vol. 127, № 3. Art. 034302. DOI: https://doi.org//10.1063/1.5132604

14. Kharchenko A.A., Lukashevich M.G., Odzhaev V.B. [et al.]. Correlation of electronic and magnetic pro-perties of thin polymer layers with cobalt nanoparticles // Particle and Particle Systems Characterization. 2013. Vol. 30, № 2. P. 180–184. DOI: https://doi.org//10.1002/ppsc.201200042

15. Sitnikov A.V., Makagonov V.A., Kalinin Y.E. [et al.]. Structure and electrical properties of Con(CoO)100 – n thin-film composites // Technical Physics. 2024. Vol. 69, № 6. P. 1813–1822. DOI: https://doi.org//10.1134/S1063784224060458

16. Galkin K.N., Kropachev O.V., Maslov A.M. [et al.]. Electronic structure and optical properties of Ca2Si films grown on silicon different oriented substrates and calculated from first principles // St. Petersburg State Polytechnical University Journal. Physics and Mathematics. 2022. Vol. 15, № S3.1. P. 16–21. DOI: https://doi.org//10.18721/JPM.153.102

17. Galkin N.G., Galkin K.N., Kropachev O.V. [et al.]. Formation, structure, and optical properties of singlephase CaSi and CaSi2 films on Si substrates // St. Petersburg State Polytechnical University Journal. Physics and Mathematics. 2022. Vol. 15, № S3.1. P. 9–15. DOI: https://doi.org//10.18721/JPM.153.101

18. Galkin N.G., Galkin K.N., Dotsenko S.A. [et al.]. Ca2Si(100) epitaxial films on the Si(111) substrate: Template growth, structural and optical properties // Materials Science in Semiconductor Processing. 2020. Vol. 113. Art. 105036. DOI: https://doi.org//10.1016/j.mssp.2020.105036

19. Chusovitin E., Dotsenko S., Chusovitina S. [et al.]. Formation of a thin continuous GaSb film on Si(001) by solid phase epitaxy // Nanomaterials. 2018. Vol. 8, № 12. Art. 987. DOI: https://doi.org//10.3390/nano8120987

20. Chernev I.M., Shevlyagin A.V., Galkin K.N. [et al.]. On the way to enhance the optical absorption of a-Si in NIR by embedding Mg2Si thin film // Applied Physics Letters. 2016. Vol. 109, № 4. Art. 043902. DOI: https://doi.org//10.1063/1.4960011

21. Galkin N.G., Galkin K.N., Chernev I.M. [et al.]. Effect of sacrificial Mg2Si layers and kinetic parameters on the growth, structure, and optical properties of thin Ca2Si films on silicon substrates // Semiconductors. 2022. Vol. 56, № 7-12. P. 367–381. https://doi.org/10.1134/s1063782622090019

22. Jin Y., Fang H., Chen R. [et al.]. Graded distribution and refinement of Mg2Si in Al–Mg2Si alloy prepared by traveling magnetic field // Journal of Materials Research and Technology. 2023. Vol. 24. P. 2319–2331. DOI: https://doi.org//10.1016/j.jmrt.2023.03.152

23. Jeon Ju., Lee S.H., Kim S.D. [et al.]. Ultrasound alters the nucleation pathway of primary Mg2Si in a chemically modified multicomponent Al–Mg2Si alloy // Journal of Alloys and Compounds. 2024. Vol. 1009. Art. 177001. DOI: https://doi.org//10.1016/j.jallcom.2024.177001

24. Chernev I.M., Gouralnik A.S., Subbotin E.Yu. [et al.]. FeSi and CrSi2 thin films as transparent conductive layers for VIS/SWIR sensitive Mg2Si films grown on Si // Bulletin of the Russian Academy of Sciences: Physics. 2023. Vol. 87, № S3. P. 370–374. DOI: https://doi.org/10.1134/s1062873823705718

25. Siminel N., Galkin K.N., Arushanov E., Galkin N.G. Photoconductivity study of Ca2Si epitaxial film on Si(111) substrate // Vacuum. 2022. Vol. 203. Art. 111302. DOI: https://doi.org/10.1016/j.vacuum.2022.111302

26. Myagkov V.G., Bykova L.E., Zhigalov V.S. [et al.]. Solid-state synthesis, magnetic and structural properties of epitaxial D03-Fe3Rh(001) thin films // Intermetallics. 2023. Vol. 157. Art. 107871. DOI: https://doi.org//10.1016/j.intermet.2023.107871

27. Патент 140712 U1 Российская Федерация, МПК H01L 21/265. Маска для ионного легирования в пластины карбида кремния / В.В. Афанаскин, Н.А. Брюхно, М.С. Воронцов [и др.]; ЗАО «ГРУППА КРЕМНИЙ ЭЛ»: № 2013150369/28 : заявл. 12.11.2013 : опубл. 20.05.2014. EDN: AYKSGG

28. Патент 2789662 C1 Российская Федерация, МПК H01L 21/02. Способ нанесения через жёсткую маску металлического рисунка на область с другим ранее нанесённым металлическим рисунком при производстве крышек корпусов неохлаждаемых термочувствительных элементов / К.А. Курыгин, И.М. Москаленко, А.А. Абакаров; ООО «Маппер»: № 2022118682: заявл. 08.07.2022 : опубл. 07.02.2023. EDN: EKEAIO

29. Патент 80048 U1 Российская Федерация, МПК G07F 11/16. Устройство перемещения товара в торговом автомате / Д.В. Щербаков ; заявитель Общество с ограниченной ответственностью «Комтоп» : № 2008118550/22 : заявл. 12.05.2008 : опубл. 20.01.2009. EDN: OBMWVU

30. Alcock C.B., Itkin V.P., Horrigan M.K. Vapour pressure equations for the metallic elements: 298–2500K // Canadian Metallurgical Quarterly. 1984. Vol. 23, № 3. P. 309–313. DOI: https://doi.org/10.1179/cmq.1984.23.3.309

Downloads

Published

2025-06-30

Issue

Section

Mechanics of Deformable Solids

How to Cite

1.
Automation of the doping process of silicide-containing samples. Вестник Инженерной школы ДВФУ [Internet]. 2025 Jun. 30 [cited 2025 Jul. 2];2(2(63):3-14. Available from: https://journals.dvfu.ru/vis/article/view/1575