Chemical and epitaxial methods of forming low-dimensional materials

Authors

DOI:

https://doi.org/10.24866/2227-6858/2025-1/27-42

Keywords:

silicides, low-dimensional materials, chemical and epitaxial methods, structural properties

Abstract

The article provides an overview of chemical and epitaxial methods for the formation of low-dimensional silicides. The literature review allowed us to determine which methods are more preferable in the formation of silicides with certain properties. Metal silicides are in demand materials for the production of photoelectric and thermoelectric converters, optical sensors, etc., therefore, they are of great interest to researchers. An analysis of literature sources has shown that laser-induced chemical vapor deposition from the gas phase (LCVD) and LCVD in plasma is effective for producing films of silicides of refractory metals. For the synthesis of films with the structure of nanoscale filaments, chemical deposition from the gas phase in a tubular furnace is the optimal method. The formation of films with a semiconductor conductivity is effectively carried out by applying metal to silicon, followed by evaporation or spraying and heat treatment, as well as the introduction of metal atoms from the metal film deposited on the surface of Si ions of inert gases. For the synthesis of a solid solution including semiconductor metal silicides, the optimal method is direct fusion of elements followed by hot pressing. For the formation of alloyed films of metal compounds with silicon with a poorly developed relief with a given thickness at a stable deposition rate, the method of molecular beam epitaxy is well-proven. Solid-phase and reactive epitaxy are less expensive methods for producing silicide films than those described above.

Author Biographies

  • Dmitriy V. Fomin, Amur State University

    Candidate of Physical and Mathematical Sciences, Associate Professor, Director of the REC named after K.E. Tsiolkovsky

  • Aleksey V. Polyakov, Amur State University

    Junior Scientific Assistant

  • Ilya O. Sholygin, Amur State University

    Master's Student of 2 years of study

  • Ilya A. Ryabov, Amur State University

    Laboratory Assistant

References

1. West G.A., Beeson K.W., Gupta A. Laser‐induced chemical vapor deposition of titanium silicide films // Journal of Vacuum Science & Technology A. 1985. № 3. P. 2278–2282. DOI: https://doi.org/10.1116/1.572907

2. Zergioti I., Zervaki A., Hatziapostolou A. [et al]. Deposition of refractory coatings by LCVD // Optical and Quantum Electronics. 1995. Vol. 27. № 12. P. 1377–1383. DOI: https://doi.org/10.1007/BF00326489

3. Мустафаев Г.А., Черкесова Н.В., Хасанов А.И., Мустафаев А.Г. Технология формирования силицидов тугоплавких металлов для изделий микро- и наноэлектроники // Вестник Академии наук Чеченской Республики. 2020. № 4(51). С. 28–32. DOI: https://doi.org/10.25744/vestnik.2020.51.4.005

4. Ковалевский А.А., Лабунов В.А., Строгова А.С., Цыбульский В.В. Исследование особенностей образования полупроводникового дисилицида титана // Журнал технической физики. 2016. Т. 86, № 9. С. 62–64. DOI: https://doi.org/10.1134/S1063784216090139

5. Комар О.М. Фундаментальные особенности создания и использования дисилицида титана с полупроводниковыми свойствами // Новости науки и технологий. 2015. № 4(35). С. 32–41. EDN: YFTDBH

6. Анисович А.Г., Маркевич М.И., Щербакова Е.Н. Исследование структуры полупроводниковой фазы силицида титана: материалы 17-й Международной научно-технической конференции «Приборостроение–2024»: Минск, 2024. С. 388–389. https://rep.bntu.by/handle/data/153166.

7. Zhang H., Li F., Liu C., Cheng H. The facile synthesis of nickel silicide nanobelts and nanosheets and their application in electrochemical energy storage // Nanotechnology. 2008. Vol. 19, № 16. P. 165606. DOI: https://doi.org/10.1088/0957-4484/19/16/165606

8. Kitti J.A., Lauwers A., Demeurisse C. [et al.] Direct evidence of linewidth effect: Ni31Si12 и Ni3Si formation on 25 nm Ni fully silicided gates // Applied Physics Letters. 2007. Vol. 90, № 17. P. 172107–172107-3. DOI: https://doi.org/10.1063/1.2732820

9. Pokhrel A., Samad L., Meng F., Jin S. Synthesis and characterization of barium silicide (BaSi2) nanowire arrays for potential solar applications // Nanoscale. 2015. Vol. 7, № 41. P. 17450–17456. DOI: https://doi.org/10.1039/c5nr03668b

10. Дубов В.Л., Фомин Д.В. BaSi2 – перспективный материал для фотоэлектрических преобразователей (обзор) // Успехи прикладной физики. 2016. № 6. С. 599–605.

11. Kumar M., Umezawa N., Zhou W., Imai M. Barium disilicide as a promising thin-film photovoltaic absorber: structural, electronic, and defect properties // Journal of Materials Chemistry A. 2017. Vol. 48, № 5. P. 25293–25302. DOI: https://doi.org/10.1039/C7TA08312B

12. Патент RU2734095C1. Способ изготовления силицида никеля / Г.А. Мустафаев, А.Г. Мустафаев, Н.В. Черкесова. Заявл. 02.05.2020. Опубл. 12.10.2020.

13. Соловьёв Я.А., Пилипенко В.А. Влияние температуры быстрой термической обработки на электрофизические свойства пленок никеля на кремнии // Доклады БГУИР. Т. 18, № 1. С. 81–88. DOI: https://doi.org/10.35596/1729-7648-2020-18-1-81-88

14. Исаченко Г.Н., Бочков Л.В., Самунин А.Ю. [и др.] Термоэлектрические свойства твердого раствора Mg2Si0,3Sn0,7 p-типа, полученного методом горячего прессования // Научно-технический вестник информационных технологий, механики и оптики. 2014. № 3 (91). С. 57–63.

15. Yudanto S.D., Hasbi M.Y., Chandra S.A. [et al.] Influence of sintering temperature on the structural of Mg2Si0,3Sn0,7 alloy prepared by powder metallurgy // Acta Metallurgica Slovaca. 2023. Vol. 29, № 4. P. 210–213. DOI: https://doi.org/10.36547/ams.29.4.1965

16. Assahsahi I., Popescu B., Bouayadi R. [et al.] Thermoelectric properties of p-type Mg2Si0,3Sn0,7 doped with silver and gallium // Journal of Alloys and Compounds. 2023. Vol. 944. P. 169270. DOI: https://doi.org/10.1016/j.jallcom.2023.169270

17. Yudanto S.D., Astawa I.N.G.P., Hasbi M.Y. Influence of sintering temperature on the structural of Mg2Si0,3Sn0,7 alloy prepared by powder metallurgy // Acta Metallurgica Slovaca. 2023. Vol. 29, № 4. P. 210–213. DOI: https://doi.org/10.36547/ams.29.4.1965

18. Herman M.A., Sitter H. Molecular beam epitaxy: fundamentals and current status // Springer Science & Business Media. 2012. Vol. 7. 394 p. ISBN: 9783642800627

19. Inomata Y., Nakamura T., Suemasu T., Hasegawa F. Epitaxial growth of semiconducting BaSi2 films on Si (111) substrates by molecular beam epitaxy // Japanese Journal of Applied Physics. 2004. Vol. 43, № 4A. P. L478. DOI: https://doi.org/10.1143/JJAP.43.4155.

20. Vantomme A., Mahan J.E., Langouche G. [et al.] Thin film growth of semiconducting Mg2Si by codeposition // Applied Physics Letters. 1997. Vol. 70, № 9. P. 1086–1088. DOI: https://doi.org/10.1063/1.118492

21. Hong Yu, Shentong Ji, Xiangyan Luo, Quan Xie. Technology CAD (TCAD) simulations of Mg2Si/Si heterojunction photodetector based on the thickness effect // Sensors. 2021. Vol. 26. № 16. P. 5559. DOI: https://doi.org/10.3390/s21165559

22. Hong Yu, Zhangjie Mo, Rui Deng [et al.] Fabrication and characterization of visible to near-infrared photodetector based on multilayer graphene/Mg2Si/Si heterojunction // Nanomaterials. 2022. Vol. 12, № 18. P. 3230. DOI: https://doi.org/10.3390/nano12183230

23. Hayashi K., Saito W., Sugimoto K. [et al.] Preparation, thermoelectric properties, and crystal structure of boron-doped Mg2Si single crystals // AIP Advances. 2020. Vol. 10, № 3. P. 035115. DOI: https://doi.org/10.1063/1.5143839

24. Singh S., Sharma Y.C. A review on Silicide based materials for thermoelectric applications // International Journal of Advanced Engineering Research and Science. 2021. Vol. 8, № 8. P. 160–168. DOI: https://dx.doi.org/10.22161/ijaers.88.19

25. Cederkrantz D., Farahi N., Borup K.A. [et al.] Enhanced thermoelectric properties of Mg2Si by addition of TiO2 nanoparticles // Journal of Applied Physics. 2012. Vol. 111, № 2. P. 023701. DOI: https://doi.org/10.1063/1.3675512

26. Ramirez D.C., Macario L., Cheng X. [et al.] Large scale solid state synthetic technique for high performance thermoelectric materials: Magnesium-Silicide-Stannide // ACS Applied Energy Materials. 2020. Vol. 3, № 3. P. 2130–2136. DOI: https://doi.org/10.1021/acsaem.9b02146

27. Stathokostopoulos D., Teknetzi A., Tarani E. [et al.] Synthesis and characterization of nanostructured Mg2Si by pack cementation process // Results in Materials. 2022. Vol. 13, № 1. P. 100252. DOI: https://doi.org/10.1016/j.rinma.2021.100252

28. Galkin N.G., Goroshko D.L., Galkin K.N. [et al.] SPE grown BaSi2 on Si (111) substrates: Optical and photoelectric properties of films and diode heterostructures on their base // Japanese Journal of Applied Physics. 2020. Vol. 59, №. SF. P. SFFA11. DOI: https://doi.org/10.35848/1347-4065/ab6b76

29. Galkin N.G., Galkin K.N., Fomin D.V. [et al.] Comparison of crystal and phonon structures for polycrystalline BaSi2 films grown by SPE method on Si (111) substrate // Diffusion and Defect Data. Pt A Defect and Diffusion Forum. 2018. Vol. 386 DDF. P. 48–54. DOI: https://doi.org/10.4028/www.scientific.net/DDF.386.48

30. Чернев И.М., Субботин Е.Ю., Аргунов Е.В. [и др.] Плёнка Mg2Si на Si (111), полученная методом сверхбыстрого реактивного осаждения Mg: структура и термоэлектрические свойства // Научно-технические ведомости СПбГПУ. Физико-математические науки. 2023. Т. 16, № 3.1. С. 106–111. DOI: https://doi.org/10.18721/JPM.163.119

Downloads

Published

2025-03-31

Issue

Section

Mechanics of Deformable Solids

How to Cite

1.
Chemical and epitaxial methods of forming low-dimensional materials. Вестник Инженерной школы ДВФУ [Internet]. 2025 Mar. 31 [cited 2025 Jun. 28];1(1(62):27-42. Available from: https://journals.dvfu.ru/vis/article/view/1574