Simplified method for wave glider speed calculation

Authors

DOI:

https://doi.org/10.24866/2227-6858/2025-1/56-65

Keywords:

wave glider, flapping foil, propulsion, seaworthiness

Abstract

This paper presents a simplified method for calculating the speed of a wave glider. To describe the motion of the “surface hull – glider” system the Kane method is used, which is well known in the field of kinematics and dynamics of manipulative robots. The proposed algorithm lacks the classical theory of flapping foils functions, which greatly simplifies the implementation of the proposed method. The developed method has been successfully verified and validated by comparing it with experimental data on the motion of a wave glider model in a regular head wave. Further development of this method will make it possible not only to predict the achievable speeds of a wave glider in real sea conditions, but also to optimize its geometric parameters.

Author Biographies

  • Danil A. Albaev, State Marine Technical University in St. Petersburg

    Candidate of Engineering Sciences, Associate Professor in Ship Theory Department

  • Kirill D. Ovchinnikov, State Marine Technical University in St. Petersburg

    Candidate of Engineering Sciences, Associate Professor, Associate Professor in Ship Design Department

References

1. Рождественский К.В., Рыжов В.А. Математические модели в теории машущего крыла. Л.: Изд. ЛКИ, 1985.

2. Rozhdestvensky K.V., Ryzhov V.A. Aerohydrodynamics of flapping-wing propulsors // Progress in Aerospace Sciences. 2003. № 39(8). Р. 585–633. DOI: https://doi.org/10.1016/s0376-0421(03)00077-0

3. Rozhdestvensky K.V., Ryzhov V.A. Flapping-wing propulsion / McGraw-Hill yearbook of science and technology. 2005. Р. 112–115.

4. Рождественский К.В. Оценка тяги и скорости волнового глайдера на основе упрощённой математической модели // Морской вестник. 2016. № 3(59). C. 95–98.

5. Rozhdestvensky K.V. Study of underwater and wave gliders on the basis of simplified mathematical models // Appl. Sci. 2022. № 12. P. 3465. DOI: https://doi.org/10.3390/app12073465

6. Овчинников К.Д., Потехин Ю.П., Рыжов В.А. Экспериментальное исследование характеристик модели волнового глайдера // Морской вестник. 2020. № 4(76). С. 33–35.

7. Овчинников К.Д., Синишин А.А., Белая А.Б., Рыжов В.А. Исследование влияния параметров рулевой системы на характеристики управляемости волнового глайдера. 2022. № 3, часть 1. С. 46–51. DOI: https://doi.org/10.37220/MIT.2022.57.3.005

8. Rozhdestvensky K.V., Htet Z.M. A mathematical model of a ship with wings propelled by waves // Journal of Marine Science and Application. 2021. № 20. Р. 595–620. DOI: https://doi.org/10.1007/s11804-021-00221-2

9. Рождественский К.В., Хтет З.М. К оценке индекса проектной энергетической эффективности (EEDI) судна с энергосберегающими крыльевыми устройствами // Морские интеллектуальные технологии. 2021. Т. 3, № 2. С. 58–68. DOI: https://doi.org/10.37220/MIT.2021.52.2.035

10. Wu X., Zhang X., Tian X., Li X., Lu W. A review on fluid dynamics of flapping foils // Ocean Engineering. 2020. № 195. Р. 1–30. DOI: https://doi.org/10.1016/j.oceaneng.2019.106712

11. Anderson J.M., Streitlien K., Barrett D.S., Triantafyllou M.S. Oscillating foils of high propulsive efficiency // Journal of Fluid Mechanics. 1998. Vol. 360. Р. 41–72. DOI: https://doi.org/10.1017/S0022112097008392

12. Wang P., Tian X., Lu W., Hu Z., Luo Y. Dynamic modeling and simulations of the wave glider // Applied Mathematical Modelling. 2019. № 66. Р. 96–99. DOI: https://doi.org/10.1016/j.apm.2018.08.027

13. Wang L., Li Y., Liao Y., Pan K., Zhang W. Dynamics modeling of an unmanned wave glider with flexible umbilical // Ocean Engineering. 2019. № 180. Р. 267–278.

DOI: https://doi.org/10.1016/j.oceaneng.2019.03.047

14. Sun X., Sun C., Sang H., Li C. Dynamics modeling and hydrodynamic coefficients identification of the wave glider // J. Mar. Sci. Eng. 2022. № 10. Р. 520. DOI: https://doi.org/10.3390/jmse10040520

15. Ahmed A.M.E. Resistance evaluation for the submerged glider system using CFD modelling // Journal of Advanced Research in Applied Sciences and Engineering Technology. 2023. № 29. Iss. 3. Р. 147–159. DOI: https://doi.org/10.37934/araset.29.3.147159

16. Feng Z., Chang Z., Deng C., Zhao L., Chen J., Zhang J., Zheng Z. Effects of nonlinearity of restoring springs on propulsion performance of wave glider // Nonlinear Dyn. 2022. № 108. Р. 2007–2022. DOI: https://doi.org/10.1007/s11071-022-07295-9

17. Zhou C., Wang B., Zhou H., Li J., Xiong R. Dynamic modeling of a wave glider // Frontiers of Information Technology & Electronic Engineering. 2017. № 18(9). Р. 1295–1304. DOI: https://doi.org/10.1631/fitee.1700294

18. Kane T.R., Wang C.F. On the derivation of equations of motion // Journal of the Society for Industrial and Applied Mathematics. 1965. Vol. 13. № 2. Р. 487–492.

19. Sheldahl R.E., Klimas P.C. Aerodynamic characteristics of seven symmetrical airfoil sections through 180-degree angle of attack for use in aerodynamic analysis of vertical axis wind turbines // Technical Report. 1981. 120 р. DOI: https://doi.org/10.2172/6548367

Downloads

Published

2025-03-31

Issue

Section

Ship theory and structural mechanics

How to Cite

1.
Simplified method for wave glider speed calculation. Вестник Инженерной школы ДВФУ [Internet]. 2025 Mar. 31 [cited 2025 Jun. 28];1(1(62):56-65. Available from: https://journals.dvfu.ru/vis/article/view/1571