Effect of cement mixture technological properties on the layered 3D-printed elements quality

Authors

DOI:

https://doi.org/10.24866/2227-6858/2025-1/139-154

Keywords:

3D printing, mixture plasticity, plasticity control method, 3D-printed concrete strength

Abstract

In connection with the relevance of quality control problem of the 3D printing process, the aim of the work was to substantiate the rational range of mixture technological properties to ensure the stability of the printed structure and the 3D-printed  concrete strength properties., The patented composition  of powder-like 3D printable mixture  was used in the experiments. In order to evaluate the technological properties, we used a complex criterion for assessing the manufacturability of the 3D printable mixture in terms of plastic strength, determined using a specially designed conical plastometer. According to the results of the approval of the device, its suitability for operational control of the mixture quality in the whole technologically possible range of printing conditions was established. As part of the research, a model element was printed on a laboratory 3D printer and its quality and stability were evaluated. After curing, the element was sawn into samples of standardised sizes for compressive and flexural tests along and across the layer’s printing direction. It was found that to ensure the quality and stability of the printed structure, the reasonable range of plastic strength values is 0.8–2.8 kPa. According to the strength criteria of layered 3D printed concrete the re-asonable range of plastic strength is 0.8–1.8 kPa.  When the plasticity values increase above 1.8 kPa, a decrease in the bonding strength of the layers and the compressive and flexural strength of the 3D printed concrete is recorded.

Author Biographies

  • Pavel Yu. Yurov, Voronezh State Technical University

    Postgraduate Student, Junior Researcher

  • Davut R. Karakchi-Ogli, Voronezh State Technical University

    Junior Researcher

References

1. Wangler T., Lloret E., Reiter L., Hack N., Gramazio F., et al. Digital concrete: opportunities and challenges // RILEM Technical Letters. 2016. Vol. 1. P. 67–75. DOI: https://doi.org/10.21809/rilemtechlett.2016.16

2. Perrot A. Impression 3D du béton: État de l’art et challenges de la révolution de la construction digitale. France: ISTE Group, 2019. 160 p. (In Fr.).

3. Roussel N., Richard B., Nicolas D., Ivanova I., Kolawole J.T., et al. Assessing the fresh properties of printable cementbased materials: high potential tests for quality control // Cement and Concrete Research. 2022. Vol. 158. № 106836. DOI: https://doi.org/10.1016/j.cemconres.2022.106836

4. Rehman A.U., Kim I.-G., Kim J.-H. Towards full automation in 3D concrete printing construction: development of an automated and inline sensor-printer integrated instrument for in situ assessment of structural build-up and quality of concrete // Developments in the Built Environment. 2024. Vol. 17. № 100344. DOI: https://doi.org/10.1016/j.dibe.2024.100344

5. Roussel N. Steady and transient flow behaviour of fresh cement pastes // Cement and Conc-rete Research. 2005. Vol. 35(9). P. 1656–1664. DOI: https://doi.org/10.1016/j.cemconres.2004.08.001

6. Mohammad A M., Masoud H., Ammar Y. Use of the chemical and mineral admixtures to tailor the rheology and the green strength of 3D printing cementitious mixtures // Second RILEM International Conference on Concrete and Digital Fabrication (DC – 2020), Eindhoven, The Netherlands, 6–9 July 2020. Switzerland: RILEM Bookseries, 2020. P. 73–82. DOI: https://doi.org/10.1007/978-3-030-49916-7_8

7. Perrot A., Rangeard D., Pierre A. Structural built-up of cement-based materials used for 3D-printing extrusion techniques // Materials and Structures. 2016. № 49. P. 1213–1220. DOI: https://doi.org/10.1617/s11527-015-0571-0

8. Placzek, G., Schwerdtner P. Concrete additive manufacturing in construction: integration based on component-related fabrication strategies // Buildings. 2023. Vol. 13(7). № 1769. DOI: https://doi.org/10.3390/buildings13071769

9. Sibel K., Ozan E.A., Tayfun Y., Gizem B.G., Sedat E., et al. Design of energy-efficient white portland cement mortars for digital ffabrication // Second RILEM International Conference on Concrete and Digital Fabrication (DC – 2020), Eindhoven, The Netherlands, 6–9 July 2020. Switzerland: RILEM Bookseries, 2020. P. 64–72. DOI: https://doi.org/10.1007/978-3-030-49916-7_7

10. Shahmirzadi M.R., Gholampour A., Kashani A., Ngo T.D. Shrinkage behavior of cementitious 3D printing materials: effect of temperature and relative humidity // Cement and Concrete Composites. 2021. Vol. 124. № 104238. DOI: https://doi.org/10.1016/j.cemconcomp.2021.104238

11. Özalp F., Yilmaz H.D. Fresh and hardened properties of 3D high-strength printing concrete and its recent applications // Iranian Journal of Science and Technology. 2020. Vol. 44.

P. 319–330. DOI: https://doi.org/10.1007/s40996-020-00370-4

12. Panda B., Paul S.C., Hui L.J., Tay Y.W.D., Tan M.J. Additive manufacturing of geopolymer for sustainable built environment // Journal of Cleaner Production. 2017. Vol. 167. P. 281–288. DOI: https://doi.org/10.1016/j.jclepro.2017.08.165

13. Panda B., Noor Mohamed N.A., Paul S.C., Bhagath Singh G., Tan M.J., Šavija B. The effect of material fresh properties and process parameters on buildability and interlayer adhesion of 3D printed concrete // Materials. 2019. Vol. 12(13). № 2149. DOI: https://doi.org/10.3390/ma12132149

14. Wolfs R., Bos F., Salet T. Hardened properties of 3D printed concrete: The influence of process parameters on interlayer adhesion // Cement and Concrete Research. 2019. Vol. 119. P. 132–140. DOI: https://doi.org/10.1016/j.cemconres.2019.02.017

15. Hou Z.Y., Zhang Y., Zhang C., Chen Y.D., Chen C., Zhang Y.M., Zhang Y.S. Experimental methods for the mechanical properties of 3D printed concrete // Journal of Concrete and Cement Products. 2020. Vol. 10. DOI: https://doi.org/10.54097/hset.v10i.1227

16. Патент № 2729283 C1 Российская Федерация, МПК C04B 28/04. Двухфазная смесь на основе цемента для композитов в технологии строительной 3D-печати: № 2019133428: заявл. 21.10.2019: опубл. 05.08.2020 / Славчева Г.С., Артамонова О.В., Бритвина Е.А. [и др.]; заявитель Феде-ральное государственное бюджетное образовательное учреждение высшего образования «Воронежский государственный технический университет».

17. Юров П.Ю. Обоснование показателя и способа контроля технологичности смеси как критерия регулирования процесса 3D-печати // Международная конференция по физике материалов, строительным конструкциям и технологиям в строительстве, промышленной и производст-венной инженерии: сборник трудов V международной научно-технической конференции, ВлГУ, 23–25 апреля 2024 г. Владимир: АРКАИМ, 2024. С. 264–272.

18. Ma G., Li Z., Wang L., Wang F., Sanjayan J. Mechanical anisotropy of aligned fiber reinforced composite for extrusion-based 3D printing // Construction and Building Materials. 2019. Vol. 202. P. 770–783. DOI: https://doi.org/10.1016/j.conbuildmat.2019.01.008

19. Nerella V.N., Hempel S., Mechtcherine V. Effects of layer-interface properties on mechanical performance of concrete elements produced by extrusion-based 3D-printing // Construction and Building Materials. 2019. Vol. 205. P. 586–601. DOI: https://doi.org/10.1016/j.conbuildmat.2019.01.235

20. Bong S.H., Xia M., Nematollahi B., Shi C. Ambient temperature cured ‘just-add-water’ geopolymer for 3D concrete printing applications // Cement and Concrete Composites. 2021. Vol. 121. № 104060. DOI: https://doi.org/10.1016/j.cemconcomp.2021.104060

Downloads

Published

2025-03-31

Issue

Section

Building Materials and Products

How to Cite

1.
Effect of cement mixture technological properties on the layered 3D-printed elements quality. Вестник Инженерной школы ДВФУ [Internet]. 2025 Mar. 31 [cited 2025 Apr. 27];1(1(62):139-54. Available from: https://journals.dvfu.ru/vis/article/view/1566