Modeling of wave processes in a thick-walled viscoelastic spherical shell under impulse load

Authors

  • Sergey G. Saiyan Moscow State University of Civil Engineering; Ishlinsky Institute for Problems in Mechanics of the Russian Academy of Sciences; SRC “StaDiO” https://orcid.org/0000-0003-0694-4865
  • Konstantin A. Modestov Moscow State University of Civil Engineering; Voronezh State Technical University https://orcid.org/0000-0003-4596-2652
  • Oleg A. Brygar Moscow State University of Civil Engineering

DOI:

https://doi.org/10.24866/2227-6858/2024-4/31-39

Keywords:

thick-walled shell, viscoelasticity, spherical shell, Laplace transform, impulse load

Abstract

The article investigates the problem of propagation of longitudinal waves in a thick-walled viscoelastic spherical shell under impulse load on its inner surface. The paper presents a numerical-analytical solution to the problem using the Laplace transform. The viscoelasticity model is described through the shear modulus operator relaxing according to the Kelvin – Voigt model without taking into account the relaxation of the volumetric module. The authors highlight important aspects, such as the need to take into account high-frequency oscillations and inertial effects arising from impulse load. Viscoelastic materials exhibit complex behavior depending on the time and frequency of load application, which requires the use of appropriate behaviors. The article presents graphs of the dependence of displacements on a radial variable at different time intervals, which allows us to better understand the reaction of a viscoelastic shell under the influence of a pulsed load. The results of the study can be useful in the development of structures subject to significant short-term loads (pulse effects), such as high-pressure tanks, pipelines, reactors, etc.

Author Biographies

  • Sergey G. Saiyan, Moscow State University of Civil Engineering; Ishlinsky Institute for Problems in Mechanics of the Russian Academy of Sciences; SRC “StaDiO”

    Researcher at the Scientific and Educational Center for Computer Modeling of Unique Buildings, Structures and Complexes named after A.B. Zolotov; Junior Researcher; Lecturer at the Department of Computer Science and Applied Mathematics, Calculation Engineer

  • Konstantin A. Modestov , Moscow State University of Civil Engineering; Voronezh State Technical University

    Senior Lecturer at the Department of General and Applied Physics; Junior Researcher

  • Oleg A. Brygar , Moscow State University of Civil Engineering

    Senior Laboratory Assistant at the Department of General and Applied Physics

References

Saiyan S.G., Paushkin A.G. Development and verification of the two-layer thick-walled spherical shell's finite element model under temperature and force exposure // IOP Conference Series: Materials Science and Engineering. 2020. Art. 032058. DOI: https://doi.org/10.1088/1757-899X/913/3/032058

Андреев В.И., Булушев С.В. Оптимизация неоднородной толстостенной сферической оболочки, находящейся в температурном поле // Вестник МГСУ. 2012. № 12. С. 40–46.

Андрианов И.К., Лин Т. Предельное деформирование толстостенной сферической оболочки с учетом сжимаемости материала и его конечно-элементная верификация // Производственные технологии будущего: от создания к внедрению: материалы VI Международной научно-практической конференции молодых ученых, Комсомольск-на-Амуре, 05–11 декабря 2022 года: в 2 ч. Ч. 2. Комсомольск-на-Амуре: Комсомольский-на-Амуре государственный университет, 2023. С. 3–6.

Артемов М.А. и др. Задача о толстостенной сферической оболочке // Advanced Engineering Research (Rostov-on-Don). 2021. Т. 21, № 1. С. 22–31.

Лычев С.А., Сайфутдинов Ю.Н. Уравнения движения трехслойной вязкоупругой сферической оболочки // Вестник СамГУ. 2005. № 6. С. 70–88.

Almuratov Sh. Radial vibrations of a viscoelastic spherical shell // Universum: technical sciences. 2022. № 3–7(96). С. 4–8.

Rossikhin Y., Shitikova M. Analysis of two colliding fractionally damped spherical shells in modelling blunt human head impacts // Open Physics. 2013. № 11(6). P. 760–778. DOI: https://doi.org/10.2478/s11534-013-0194-4

Liu T., Chen Yu., Hutchinson J., Jin L. Buckling of viscoelastic spherical shells // Journal of the Mechanics and Physics of Solids. 2022. № 169. Art. 105084. DOI: https://doi.org/10.1016/j.jmps.2022.105084

Achenbach J. Wave propagation in elastic solids. Elsevier, 2012. 425 с.

Лепихин П.П. Исследование напряженно-деформированного состояния многослойных толстостенных цилиндрических и сферических оболочек при импульсном нагружении по поверхности: автореф. дис. ... канд. техн. наук. Харьков, 1979. 24 с.

Ландау Л.Д., Лифшиц Е.М. Теория упругости. М.: Наука, 1965. 248 с.

Работнов Ю.Н. Элементы наследственной механики твердых тел. Москва: Наука, 1977. 384 с.

Downloads

Published

2024-12-29

Issue

Section

Mechanics of Deformable Solids

How to Cite

1.
Modeling of wave processes in a thick-walled viscoelastic spherical shell under impulse load. Вестник Инженерной школы ДВФУ [Internet]. 2024 Dec. 29 [cited 2025 Jan. 7];4(4(61):31-9. Available from: https://journals.dvfu.ru/vis/article/view/1470