The effect of appendages on the hydrodynamic characteristics and movement of a submerged body at shallow depth
DOI:
https://doi.org/10.24866/2227-6858/2024-1/3-13Keywords:
submerged body, vertical displacement, lifting force, hydrodynamic moment, free surfaceAbstract
Modern autonomous underwater vehicles have a complex hull shape with superstructures, rudders and other elements located on the surface. The study carried out an experimental and theoretical analysis of the influence of protruding parts in the form of a wing-shaped superstructure located at the bow end, horizontal and vertical stern rudders on the nature of body movement in the near-surface water environment and its hydrodynamic characteristics. For the first time, the dependences of the relative vertical displacement of a body arising under the influence of a lifting force were obtained experimentally on the basis of an experimental tank, and the trim angles of the model were determined for various values of Fr numbers. Using the proposed numerical model, the pressure fields that form around the body during its movement are calculated, the nature of wave formation on the water surface is established, and the dependences of the coefficients of lifting force and trimming moment are obtained. The results obtained were compared with data for a similar body model, without protruding parts. It was found that when a model with a more complex body architecture moved, the lifting force and, accordingly, the vertical movement of the body increased. There was also a significant increase in the values of the trimming moment and, accordingly, the trim angles of the model, which is obviously associated with an increase in the area of the wetted surface.
References
Gertler M. Resistance experiments on a systematic series of streamlined bodies of revolution – for application to the design of high-speed submarines. Washington D.C.: Navy Department, 1950. 144 p. URL: https://books.google.ru/books?id=8qPpAAAAMAAJ (дата обращения: 21.09.2023).
Burcher R., Rydill L. Concepts in submarine design. Cambridge, United Kingdom: Cambridge University Press, 1994. 314 p. URL: https://archive.org/details/conceptsinsubmar0000burc/page/310/mode/2up (дата обращения: 21.09.2023).
Kormilitsin Y., Khalizev O. Theory of submarine design. Saint-Petersburg: Saint-Petersburg State Maritime Technical University, 2001. 335 p. URL: https://ru.scribd.com/doc/86467251/Theory-of-Submarine-Design (дата обращения: 23.09.2023).
Коробкин А.А., Костиков В.К., Макаренко Н.И. Движение эллиптического цилиндра под ледовым покровом // Вестник Новосибирского государственного университета. Серия: Математика, механика, информатика. 2012. Т. 12, № 4. С. 76–81. EDN: PUYMUX
Gourlay T., Dawson E. A Havelock source panel method for near-surface submarines // Journal of Marine Science and Application. 2015, vol. 14, pp. 215–224. https://doi.org/10.1007/s11804-015-1319-5
Pogorelova A.V., Zemlyak V.L., Kozin V.M. Effect of the viscoelasticity of an ice cover on wave resistance and lift force experienced by Joubert submarine // Acta Mechanica. 2023, vol. 234, pp. 2399–2411. https://doi.org/10.1007/s00707-023-03500-x
Shariati S., Mousavizadegan H. The effect of appendages on the hydrodynamic characteristics of an underwater vehicle near the free surface // Applied Ocean Research. 2017, vol. 67, pp. 31–43. https://doi.org/10.1016/j.apor.2017.07.001
Bai T.C., Xu J., Wang G.D. Analysis of resistance and flow field of submarine sailing near the ice surface // Chinese Journal of Ship Research. 2021, vol. 16, pp. 36–48.
Carrica P., Kim Y., Martin J. Near-surface self propulsion of a generic submarine in calm water and waves // Ocean Engineering. 2019, vol. 183, pp. 87–105. https://doi.org/10.1016/j.oceaneng.2019.04.082
Toxopeus S., Kerkvliet M., Vogels R., Quadvlieg F., Nienhuis B. Submarine hydrodynamics for off-design conditions // Journal of Ocean Engineering and Marine Energy. 2022, vol. 8, pp. 499–511. https://doi.org/10.1007/s40722-022-00261-y
Земляк В.Л., Васильев А.С., Козин В.М., Бабичева Е.Г. Влияние горизонтальных и вертикальных рулей на характер движения погруженного тела в приповерхностной водной среде // Вестник Инженерной школы Дальневосточного федерального университета. 2023. № 3(56). С. 3–14. https://doi.org/10.24866/2227-6858/2023-3/3-14
Земляк В.Л., Козин В.М. Ледовый бассейн лаборатории ледотехники // Вестник Приамурского государственного университета им. Шолом-Алейхема. 2021. № 1(42). С. 19–31. https://doi.org/10.24412/2227-1384-2021-142-19-31
Войткунский Я.И. Сопротивление движению судов. Ленинград: Судостроение, 1988. 288 с.
Mackay M.A. A review of sting support interference and some related issues for the marine dynamic test facility (MDTF). Dartmouth: Defence Research Establishment Atlantic. 1993. 54 p. URL: https://archive.org/details/DTIC_ADA271806 (дата обращения: 28.09.2023).
Hama F., Long J., Hegarty J. On Transition from Laminar to Turbulent Flow // Journal of Applied Physics.1957, vol. 28, pp. 388–394. https://doi.org/10.1063/1.1722760
Земляк В.Л., Васильев А.С., Козин В.М. Движение погруженного тела вблизи свободной поверхности жидкости // Вестник Инженерной школы Дальневосточного федерального университета. 2020. № 4(45). С. 16–25. https://doi.org/10.24866/2227-6858/2020-4-2
Sturova I.V. Unsteady three-dimensional sources in deep water with an elastic cover and their applications // Journal Fluid Mechanics. 2013, vol. 730, pp. 392–418. https://doi.org/10.1017/jfm.2013.303
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Far Eastern Federal University: School of Engineering Bulletin
This work is licensed under a Creative Commons Attribution 4.0 International License.