Features of spatial organization of the urban environment resistant to climate change based on greening systems in the conditions of the south of Primorye
DOI:
https://doi.org/10.24866/2227-6858/2025-3/162-183Keywords:
ecological urbanism, adaptation to climate change, green building systems, bioclimatic architecture, nature inclusive architecture, biotope cityAbstract
The paper examines the features of transformation of the spatial characteristics in urban development when integrating greenery systems as a means of shaping a comfortable urban environment adapted to climate change in the southern Primorsky Krai. In developing a regional model for spatial organization of the urban environment based on green systems, this study adoptes the strategy of ecosystem adaptation, using the ability of natural systems to respond flexibly to the dynamics of climatic and weather patterns. As a result of the research, proposals for the shaping of the spatial structure of urban development through placing greening systems in the climatic conditions of the south of Primorye have been formulated. It is demonstrated that only a continuous system of landscaping terrain and architecture, as an equal component of urban topography, gives anthropogenic landscapes capabilities comparable to natural ones to correct the uncomfortable climatic environments. A level model of the climate-regulating system of urban environment, based on the integration of urban development and green systems, is proposed. The levels of the proposed climate-regulating model are characterized by the changing nature of the spatial interaction between urban development and green systems, depending on the orientation of formed green systems towards the horizon and changes in the indicators of climatic factors with the increasing building height. To validate the proposed approach, an experimental project of climate-resistant development integrating green systems was developed for the Shkota Peninsula area in Vladivostok.
References
1. Guglielmina Mutani, Valeria Todeschi. The effects of green roofs on outdoor thermal comfort, urban heat island mitigation and energy savings // Atmosphere. 2020. № 11(2). P. 123. DOI: https://doi.org/10.3390/atmos11020123
2. Kato S. An overview of green infrastructure’s contribution to climate change adaptation // Proceedings of the 13th International Symposium of Landscape Architecture, Korea, China, and Japan. 2012. P. 224–228.
3. Graça M., Cruz S., Monteiro A., Neset T.-S. Designing urban green spaces for climate adaptation: A critical review of research outputs // Urban Climate. 2022. Vol. 42. P. 101126. DOI: https://doi.org/10.1016/j.uclim.2022.101126
4. Hamzah T.R. Yeang: ecology of the sky / By Ivor Richards. Mulgrave, Australia: The Images Publishing Group. 2001.
5. Senthil M. Coimbatore. Green skyscrapers: a comprehensive approach to integrate greenery and bioclimatic design in high rise mixed-use buildings // International Journal of Science and Research. 2024. Vol. 13. Iss. 5. URL: https://www.ijsr.net/archive/v13i5/SR24501171936.pdf (дата обращения 25.05.2025).
6. Alina Pancewicz, Anna Kurianowicz. Urban greening in the process of climate change adaptation of large cities // Energies. 2024. № 17(2). P. 377. DOI: https://doi.org/10.3390/en17020377
7. Xue Z., Hou G., Zhang Z., Lyu X., Jiang M., Zou Y., Shen X., Wang J., LiuX. Quantifying the cooling-effects of urban and peri-urban wetlands using remote sensing data: case study of cities of Northeast China // Landsc. Urban Plan. 2019. № 182. P. 92–100. DOI: https://doi.org/10.1016/j.landurb-plan.2018.10.015
8. Alex Tabibi. Vertical gardening for climate change mitigation // GREENORG. 2024. URL: https://green.org/2024/01/30/vertical-gardening-for-climate-change-mitigation/ (дата обращения: 25.05.2025).
9. Dongjin Cui, Chang Su, Jian Hang, Mengye Zhu, Guanwen Chen, Cheuk Ming Mak. Effects of vertical greening on the thermal environment and energy consumption in different street canyons // Sustainable Cities and Society. 2024. Vol. 117. P. 105979. DOI: DOI:https://doi.org/10.1016/j.scs.2024.105979
10. Guglielmina Mutani, Valeria Todeschi. The effects of green roofs on outdoor thermal comfort, urban heat island mitigation and energy savings // Atmosphere. 2020. № 11(2). P. 123. DOI: https://doi.org/10.3390/atmos11020123
11. Taher H., Elsharkawy H., Newport D. The influence of urban green systems on the urban heat island effect in London // Sustainable Built Environment Conference. 2019. Wales: Policy to Practice. Cardiff, Wales, 24–25 Sep 2019. IOP Publishing Ltd. DOI: https://doi.org/10.1088/1755-1315/329/1/012046
12. Qi Z.Y. Urban forests construction and vertical greening development under climate change // Landscape Archit. Frontiers. 2023. № 11(1). P. 58–64. DOI: https://doi.org/10.15302/j-laf-1-030039
13. Yifan Luo, Zhuo Wu, Man Sing Wong, Jinxin Yang, Zhenzhi Jiao. Simulating the impact of ventilation corridors for cooling air temperature in local climate zone scheme // Sustainable Cities and Society. 2024. Vol. 115. P. 105848. DOI: https://doi.org/10.1016/j.scs.2024.105848
14. Dan-Yin Zhang, Ling Yang Li-Yi, Feng Jiang Liu, Xin-Chen Hong. Optimizing green spaces signi-ficantly improves wind environment and accessibility in county towns // Land. 2025. № 14. P. 730. DOI: https://doi.org/10.3390/land14040730
15. Johansson E., Yahia M.W. Wind comfort and solar access in a coastal development in Malmö // Sweden Urban Clim. 2020. № 33. Article 100645. DOI: https://doi.org/ 10.1016/j.uclim.2020.100645
16. Khodayari N., Hami A., Farrokhi N. The effect of trees with irregular canopy on windbreak function in Urban Areas // International Journal of Architectural Engineering and Urban Planning. 2021. № 31. P. 1–12. DOI: https://doi.org/1022068/ijaup.31.3.610
17. Nadežda Stojanović, Mirjana Tešić, Mešiček Jovana Petrović. The effect of roadside green spaces on wind speed reduction in the urban environment // Fresenius Environmental Bulletin. 2020. № 29(12). P. 10465–10473.
18. James R. Brandle, John Tyndall, Robert A. Sudmeyer. Windbreak practice // North American Agroforestry: An Integrated Science and Practice. Chapter 5. P. 75–104. DOI: https://doi.org/10.1002/9780891183785.ch5
19. Wade Pryor. Best evergreen windbreaks to reduce energy costs (review) // Pryor’s Nursery. October 18, 2024. URL: https://pryors.com/2024/10/18/creating-windbreaks-with-evergreens-to-reduce-energy-costs/ (дата обращения 25.05.2025).
20. Fletcher T.D., Shuster W., Hunt W.F., Ashley R., Butler D., Arthur S., Trowsdale S., Barraud S., Semadeni-Davies A., Bertrand-Krajewski J.-L., Mikkelsen P.S., Rivard G., Uhl M., Dagenais D., Vik-lander M. SUDS, LID, BMPs, WSUD and more. The evolution and application of terminology surrounding urban drainage // Urban Water Journal. 2015. № 12(7). P. 525–542.
DOI: https://doi.org/10.1080/1573062x.2014.916314
21. Kazantsev P., Marus Yu., Smelovskaya A. Landscape and climate specifics for water sensitive urban design in Vladivostok. Published under licence by IOP Publishing Ltd IOP Conference. Series: Materials Science and Engineering. Vol. 753. Ch. 3. DOI: https://doi.org/10.1088/1757-899X/753/4/042057
22. Kheir Al-Kodmany. Greenery-covered tall buildings: a review // Buildings. 2023. № 13(9). Р. 2362. DOI: https://doi.org/10.3390/buildings13092362
23. Нефедов В.А. Архитектурно-ландшафтная реконструкция как средство оптимизации городской среды: дисс. … д-ра архитектуры. Санкт-Петербург, 2005. 329 с.
24. Biotope city Konzept // Biotope City Journal. Amsterdam, 2021. URL: https://biotope-city.net/konzept/ (дата обращения: 25.05.2025).
25. van Stiphout M., Lehner M. First guide to nature inclusive design. Kindle Edition. Amsterdam: nextcity.nl, 2020. 158 p. URL: https://nextcity.nl/first-guide-for-nature-inclusive-design/ (дата обращения 25.05.2025).
26. Бурдина Д.П., Фролова Е.И., Казанцев П.А. Конструкция фасадной системы для сбора воды в условиях умеренно-муссонного климата // Экологически ориентированная архитектура высоких технологий: Пленарные доклады и тезисы докладов Всероссийской научно-практической конференции. Москва, 24–25 ноября 2022 года. – Москва: Московский архитектурный институт (государственная академия), 2022. С. 30–31.
27. Деркачева Л.Н., Русанов В.И. Климат Приморского края и его влияние на жизнедеятельность человека. Владивосток: ДВО АН СССР, 1990. 136 с.
28. Храмцова В.К., Свинухов Г.В., Есипова Е.Н. и др. Климат Владивостока (Климат города) / Под ред. Ц.А. Швер. Ленинград: Гидрометеоиздат, 1978. 167 с.
29. Пивкин В.М., Обертас О.Г., Вольтер В.А., Баранова Т.П. Санитарно-гигиеническая оценка природно-климатических условий городов Дальнего Востока для градостроительных целей (методические рекомендации). Новосибирск, 1977. 67 с.
30. Яковлев А.В. Градостроительство на Крайнем Севере. (Метод. основы градостроит. физики). Ленинград: Стройиздат. Ленингр. отд-ние, 1987. 180 с.
31. One water. Rain city strategy. Appendix E. Engagement summary report 2017–2019 // City of Vancouver. URL: https://vancouver.ca/files/cov/rain-city-strategy.pdf (дата обращения 25.05.2025).
32. Шиян А.Ю., Казанцев П.А. Особенности формирования внешних систем озеленения общественных зданий в условиях юга Приморского края // Вестник Инженерной школы Дальневосточного федерального университета. 2024. № 1(58). С. 147–165. DOI: https://doi.org/10.24866/2227-6858/2024-1/147-165
33. Yeang K. A manual for ecological design. JohnWiley & SonsLtd, 2008. 499 р.
34. Урусов В.М., Варченко Л.И., Врищ Д.Л. Владивосток – юг Приморья: вековая и современная динамика растительности. Владивосток: Дальнаука, 2010. 420 с.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Far Eastern Federal University: School of Engineering Bulletin

This work is licensed under a Creative Commons Attribution 4.0 International License.