Alpha-band activity detected in EEG research: a century of researches and errors

Authors

DOI:

https://doi.org/10.24866/3033-5485/2025-3/13-24

Keywords:

EEG, rhythm analysis, cognitive functions, source of activity, physiology of brain activity

Abstract

The rhythmic activity of the brain is often perceived as a direct reflection of its functional activity. Despite the long period of study, there is currently no common understanding of this phenomenon, which significantly complicates the study of higher nervous functions.

Rhythmic activity of the alpha range is a complex of rhythmic phenomena produced in the visual cortex (areas 17, 18, 19), retrosplenial cortex (area 31), gnostic centers, united in the parietal region in the structure of the 7th Brodmann area, as well as in the structures of auditory perception (including Wernicke's area). The frequency and amplitude of alpha activity are not associated with the processes of implementing higher nervous functions, since they do not represent a bioelectric equivalent of the functional excitation of cortical structures, therefore, it is more appropriate to consider the alpha activity recorded during the EEG study as a kind of “carrier” component formed by individual cortical structures implementing basic functions associated with perception and spatial orientation.

The conducted study of the functional activity of structurally unchanged brain structures could offer technologies for objective diagnostics for neuropsychological and psychiatric diseases, i.e. in those areas where the position of objective diagnostic methods is extremely weak even at present.

Author Biographies

  • Sergey A. Gulyaev, Institute for Physics and Engineering in Biomedicine, National Research Nuclear University “MEPhI”,

    Associate Professor of the Department of General Medicine

  • Darisu V. Maksarova, Institute for Physics and Engineering in Biomedicine, National Research Nuclear University “MEPhI”

    Applicant of the Department of General Medicine

  • Alexander A. Garmash, Institute for Physics and Engineering in Biomedicine, National Research Nuclear University “MEPhI”

    Director

References

Práwdicz-Neminski W.W. Zur Kenntnis der elektrischen und der Innervationsvorgänge in den funktionellen Elementen und Geweben des tierischen Organismus. Elektrocerebrogramm der Säugetiere. Pflug Arch ges Physiol, 1925, vol. 209, pp. 362–382. DOI: https://doi.org/10.1007/BF01730925

Berger H. Über das Elektroenkephalogramm des Menschen. Archiv für Psychiatrie und Nervenkrankheiten, 1929, vol. 87, pp. 527–570.

Adrian E.D., Matthews B.H.C. The berger rhythm: potential changes from the occipital lobes in man. Brain, 1934, vol. 57, pp. 355–385. DOI: https://doi.org/10.1093/brain/57.4.355

Jasper H., Penfield W. Electrocorticograms in man: effect of voluntary movement upon the electrical ac-tivity of the precentral gyrus. Archiv für Psychiatrie und Nervenkrankheiten, 1949, vol. 183, pp. 163–174.

Andersen P., Andersson S.A. Physiological basis of the Alpha Rhythm. N.-Y.: Appleton-Century-Crofts, 1968. 384 p.

Gastaut H. Etude électrocorticographique de la réactivité des rythmes rolandiques [Electrocorticographic study of the reactivity of rolandic rhythm]. Rev Neurol (Paris), 1952, vol. 87(2), pp. 176–182.

Lopes Da Silva F.H., Storm Van Leeuwen W. The cortical source of the alpha rhythm. Neurosci Lett., 1977, vol. 6(2–3), pp. 237–241. https://www.doi.org/10.1016/0304-3940(77)90024-6

Klimesch W. α-band oscillations, attention, and controlled access to stored information. Trends Cogn Sci., 2012, no. 16(12), pp. 606–617. DOI: https://www.doi.org/10.1016/j.tics.2012.10.007

Grech R., Cassar T., Muscat J., Camilleri K.P., Fabri S.G., Zervakis M., Xanthopoulos P., Sakkalis V., Vanrumste B. Review on solving the inverse problem in EEG source analysis. J Neuroeng Rehabil., 2008, no. 7, pp. 5–25. DOI: https://doi.org/10.1186/1743-0003-5-25

Иванов Л.Б. Спектр мощности электроэнцефалограммы: ошибки и практика применения (лекция первая) // Медицинский алфавит. 2021. № 39. С. 45–52. DOI: https://doi.org/10.33667/2078-5631-2021-39-45-52 = Ivanov L.B. Power spectrum of electroencephalogram: Mistakes and practical application. Medical Alphabet, 2021, no. 39, pp. 45–52. (In Russ.). DOI: https://doi.org/10.33667/2078-5631-2021-39-45-52

Иванов Л.Б. Спектр мощности по электроэнцефалограмме: ошибки и практика применения (лекция вторая). Дисперсионный анализ электроэнцефалограммы по Росману // Медицинский алфавит. 2022. № 9. С. 38–43. DOI: https://doi.org/10.33667/2078-5631-2022-9-38-43 = Ivanov L.B. EEG power spectrum: Mistakes and practical application (lecture two). Dispersive EEG analysis according to Rosman’s method. Medical Alphabet, 2022, no. 9, pp. 38–43. (In Russ.). DOI: https://doi.org/10.33667/2078-5631-2022-9-38-43

Базанова О.М., Афтанас Л.И. Успешность обучения и индивидуальные частотно-динамические характеристики альфа-активности электроэнцефалограммы // Вестник Российской академии медицинских наук. 2006. № 6. С. 30–33. = Bazanova O.M., Aftanas L.I. Learnability and individual frequency characteristics of EEG alfa activity. Bulletin of the Russian Academy of Sciences, 2006, no. 6, pp. 30–35. (In Russ.).

Babiloni C., Arakaki X., Baez S., et al. Alpha rhythm and Alzheimer's disease: Has Hans Berger's dream come true? Clin Neurophysiol., 2025, vol. 172, pp. 33–50. PMID: 39978053. DOI: https://doi.org/10.1016/j.clinph.2025.02.256

Gulyaev S.A., Khanukhova L.M., Garmash A.A. Neurophysiological method for studying changes in the brain’s default mode network activity. Extreme Medicine, 2023, no. 2, pp. 64–71. DOI: https://doi.org/10.47183/mes.2023.009

Seidler R.D., Carson R.G. Sensorimotor learning: Neurocognitive mechanisms and individual differences. J Neuroeng Rehabil., 2017, no. 14(1), p. 74. DOI: https://www.doi.org/10.1186/s12984-017-0279-1. Erratum in: J Neuroeng Rehabil., 2017, no. 14(1), p. 100. DOI: https://www.doi.org/10.1186/s12984-017-0311-5

Tsay J.S., Kim H.E., McDougle S.D., Taylor J.A., Haith A., Avraham G., Krakauer J.W., Collins A.G.E., Ivry R.B. Fundamental processes in sensorimotor learning: Reasoning, refinement, and retrieval. Elife, 2024, no. 13, p. e91839. DOI: http://www.doi.org/10.7554/eLife.91839

Casile A. Mirror neurons are class of neurons discovered by Rizzolatti and colleagues. Neurosci Lett., 2013, vol. 540, pp. 1–2. DOI: http://www.doi.org/10.1016/j.neulet.2012.12.010

Cartier L., Guérin M., Saulnier F., Cotocea I., Mohammedi A., Moussaoui F., Kheloui S., Juster R.P. Sex and gender correlates of sexually polymorphic cognition. Biol. Sex. Differ., 2024, no. 15(1), p. 3. DOI: http://www.doi.org/10.1186/s13293-023-00579-8

Weirich M., Simpson A.P. Gender identity is indexed and perceived in speech. PLoS One, 2018, no. 13(12), p. e0209226. DOI: http://www.doi.org/10.1371/journal.pone.0209226

Riskind R.G., Tornello S.L. "I Think It's Too Early to Know": Gender identity labels and gender expression of young children with nonbinary or binary transgender parents. Front Psychol., 2022, no. 13, p. 916088. DOI: http://www.doi.org/10.3389/fpsyg.2022.916088

Downloads

Published

2025-09-26

Issue

Section

NEUROLOGY

How to Cite

Alpha-band activity detected in EEG research: a century of researches and errors. (2025). Clinical and Fundamental Medicine, 1(3), 13-24. https://doi.org/10.24866/3033-5485/2025-3/13-24