Биологические функции внеклеточных везикул человека
Ключевые слова:
внеклеточные везикулы, экзосомы, микровезикулы, апоптозные тельца, структура, биологические функции, клиническое использованиеАннотация
Внеклеточные везикулы представляют собой секрет практически всех клеток человека. Они выполняют регуляторную функцию, обеспечивая межклеточное взаимодействие в широком спектре физиологических и патологических процессов. Изучение механизмов таргетного везикулярного влияния на нейродегенеративные процессы, постишемический неоангиогенез, опухолевый рост, дифференцировку стволовых клеток, формирование иммунитета является перспективным в поиске новых терапевтических стратегий. Спектр транспортируемых внеклеточными везикулами протеинов и нуклеиновых кислот специфичен, что делает возможным их клеточную и тканевую идентификацию. Присутствие везикул в биологических жидкостях, таких как кровь, плазма, моча, спинномозговой ликвор, грудное молоко, может послужить основой для их использования в качестве новых диагностических маркеров. Обзор содержит современные данные об истории изучения, классификации, характеристиках и биологических функциях внеклеточных везикул человека, возможностях их клинического применения.
Библиографические ссылки
1. Chargaff E., West R. The biological significance of the thromboplastic protein of blood. J. Biol. Chem., 1946, vol. 166, pp. 189–197. DOI: https://doi.org/10.1016/S0021-9258(17)34997-9
2. Wolf P. The nature and significance of platelet products in human plasma. Br. J. Haematol., 1967, vol. 13, pp. 269–288. DOI: https://doi.org/10.1111/j.1365-2141.1967.tb08741.x
3. Webber A.J., Johnson S.A. Platelet participation in blood coagulation aspects of hemostasis. Am. J. Pathol., 1970, vol. 60, pp. 19–42. URL: https://pmc.ncbi.nlm.nih.gov/articles/PMC2032888/
4. Crawford N. The presence of contractile proteins in platelet microparticles isolated from human and animal platelet-free plasma. Br. J. Haematol., 1971, vol. 21, pp. 53–69. DOI: https://doi.org/10.1111/j.1365-2141.1971.tb03416.x
5. George J.N., Thoi L.L., McManus L.M., Reimann T.A. Isolation of human platelet membrane microparticles from plasma and serum. Blood, 1982, vol. 60, pp. 834–840. DOI: https://doi.org/10.1182/blood.V60.4.834.834
6. Караганов Я.Л., Кердиваренко Н.В., Левин В.Н. Микроангиология. Кишинев, Штиинца, 1982. 247 с.
7. Pan B.-T., Johnstone R.M. Fate of the transferrin receptor during maturation of sheep reticulocytes in Vitro: selective externalization of the receptor. Cell, 1983, vol. 33, pp. 967–978. DOI: https://doi.org/10.1016/0092-8674(83)90040-5
8. Valadi H., Ekstrom K., Bossios A., Sjostrand M., Lee J.J., Lotvall J.O. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat. Cell. Biol., 2007, vol. 9, pp. 654–659. DOI: https://doi.org/10.1038/ncb1596
9. Freyssinet J-M., Dignat-George F. More on: measuring circulating cell-derived microparticles. J. Thromb. Haemost., 2005, vol. 3(3), pp. 613–614. DOI: https://doi.org/10.1111/j.1538-7836.2005.01169.x
10. Van der Pol E., Boing A.N., Harrison P., Struk A., Nieuwland R. Classification, functions, and clinical relevance of extracellular vesicles. Pharm. Rev., 2012, vol. 64, no. 3, pp. 676–705. DOI: https://doi.org/10.1124/pr.112.005983
11. Kurtjak M., Kereïche S., Klepac D., Križan H., Perčić M., Krušić Alić V., Lavrin T., Lenassi M., Wechtersbach K., Kojc N., Vukomanović M., Zrna S., Biberić M., Domitrović R., Grabušić K., Malenica M. Unveiling the native morphology of extracellular vesicles from human cerebrospinal fluid by atomic force and cryogenic electron microscopy. Biomedicines, 2022, vol. 10, no. 6, art. 1251. DOI: https://doi.org/10.3390/biomedicines10061251
12. Biro E., Akkerman J.W., Hoek F.J., Gorter G., Pronk L.M., Sturk A. The phospholipid composition and cholesterol content of platelet-derived microparticles: a comparison with platelet membrane fractions. J. Thromb. Haemost., 2005, vol. 3, pp. 2754–2763. DOI: https://doi.org/10.1111/j.1538-7836.2005.01646.x
13. Del Conde I., Shrimpton C.N., Thiagarajan P., Lopez J.A. Tissue-factor-bearing microvesicles arise from lipid rafts and fuse with activated platelets to initiate coagulation. Blood, 2005, vol. 106, pp. 1604–1611. DOI: https://doi.org/10.1182/blood-2004-03-1095
14. Trajkovic K., Hsu C., Chiantia S., Rajendran L., Wenzel D., Wieland F. Ceramide triggers budding of exosome vesicles into multivesicular endosomes. Science, 2008, vol. 319, no. 5867, pp. 1244–1247. DOI: https://doi.org/10.1126/science.1153124
15. Record M., Carayon K., Poirot M., Silvente-Poirot S. Exosomes as new vesicular lipid transporters involved in cell–cell communication and various pathophysiologies. Biochim. Biophys. Acta., 2014, vol. 1841, no. 1, pp. 108–120. DOI: https://doi.org/10.1016/j.bbalip.2013.10.004
16. Braga C.L., da Silva L.R., Santos R.T., de Carvalho L.R.P., Mandacaru S.C., Trugilho M.R. de O., Rocco P.R.M., Cruz F.F., Silva P.L. Proteomics profile of mesenchymal stromal cells and extracellular vesicles in normoxic and hypoxic conditions. Cytotherapy, 2022, vol. 24, no. 12, pp. 1211–1224. DOI: https://doi.org/10.1016/j.jcyt.2022.08.009
17. Ostergaard O., Nielsen C.T., Iversen L.V., Jacobsen S., Tanassi J.T., Heegaard N.H. Quantitative proteome profiling of normal human circulating microparticles. J. Proteome Res., 2012, vol. 11, no. 4, pp. 2154–2163. DOI: https://doi.org/10.1021/pr200901p
18. Caby M.P., Lankar D., Vincendeau-Scherrer C., Raposo G., Bonnerot Ch. Exosomal-like vesicles are present in human blood plasma. International Immunology, 2005, vol. 17, no. 7, pp. 879–887. DOI: https://doi.org/10.1093/intimm/dxh267
19. Fernandes L.R., Rocha V.B., Carregari V.C., Urbani A., Palmisano G. A perspective on extra-cellular vesicles proteomics. Front. Chem., 2017, vol. 5, art. 102. DOI: https://doi.org/10.3389/fchem.2017.00102
20. Qu Y., Franchi L., Nunez G., Dubyak G.R. Nonclassical IL-1 beta secretion stimulated by P2X7 receptors is dependent on inflammasome activation and correlated with exosome release in murine macrophages. J. Immunol., 2007, vol. 179, no. 3, pp. 1913–1925. DOI: https://doi.org/10.4049/jimmunol.179.3.1913
21. Fischer S., Deindl E. Characterization of RNA in extracellular vesicles. Appl. Sci., 2021, vol. 11, no. 16, art. 7520. DOI: https://doi.org/10.3390/app11167520
22. Chen T.S., Lai R.C., Lee M.M., Choo A.B., Lee C.N., Lim S.K. Mesenchymal stem cell secretes microparticles enriched in pre-microRNAs. Nucleic. Acids. Res., 2010, vol. 38, no. 1, pp. 215–224. DOI: https://doi.org/10.1093/nar/gkp857
23. Villarroya-Beltri C., Gutierrez-Vazquez C., Sanchez-Cabo F., Perez-Hernandez D., Vazquez J., Martin-Cofreces N., Martinez-Herrera D.J., Pascual-Montano A., Mittelbrunn M., Sánchez-Madrid F. Sumoylated hnRNPA2B1 controls the sorting of miRNAs into exosomes through binding to specific motifs. Nat. Commun., 2013, vol. 4, art. 2980. DOI: https://doi.org/10.1038/ncomms3980
24. Balaj L., Lessard R., Dai L., Cho Y.J., Pomeroy S.L., Breakefield X.O., Skog J. Tumour microvesicles contain retrotransposon elements and amplified oncogene sequences. Nat. Commun., 2011, vol. 2, art. 180. DOI: https://doi.org/10.1038/ncomms1180
25. Guescini M., Genedani S., Stocchi V., Agnati L.F. Astrocytes and Glioblastoma cells release exosomes carrying mtDNA. J. Neural. Transm., 2010, vol. 117, pp. 1–4. DOI: https://doi.org/10.1007/s00702-009-0288-8
26. Ghanam J., Chetty V.K., Barthel L., Reinhardt D., Hoyer P.-F., Thakur B.K. DNA in extracellular vesicles: from evolution to its current application in health and disease. Cell. Biosci., 2022, vol. 12, art. 37. DOI: https://doi.org/10.1186/s13578-022-00771-0
27. Щава С.П., Степанов Е.В., Сорокин В.А. Роль экзосом в патогенезе сердечно-сосудистых заболеваний // Трансляционная медицина. 2020. Т. 7, № 5. С. 17–28. DOI: https://doi.org/10.18705/2311-4495-2020-7-5-17-28
28. Sędzik M., Rakoczy K., Sleziak J., Kisiel M., Kraska K., Rubin J., Łuniewska W., Choromańska A. Comparative analysis of exosomes and extracellular microvesicles in healing pathways: insights for advancing regenerative therapies. Molecules, 2024, vol. 29, no. 15, art. 3681. DOI: https://doi.org/10.3390/molecules29153681
29. El Safadi D., Mokhtari A., Krejbich M., Lagrave A., Hirigoyen U., Lebeau G., Viranaicken W., Krejbich-Trotot P. Exosome-mediated antigen delivery: unveiling novel strategies in viral infection control and vaccine design. Vaccines, 2024, vol. 12, no. 3, art. 280. DOI: https://doi.org/10.3390/vaccines12030280
30. Afshar Y., Sharifi N., Kamroo A., Yazdanpanah N., Saleki K., Rezaei N. Implications of glioblastoma-derived exosomes in modifying the immune system: state-of-the-art and challenges. Rev. Neurosci., 2025, vol. 36, no. 3, pp. 315–325. DOI: https://doi.org/10.1515/revneuro-2024-0095
31. Maybruck B.T., Pfannenstiel L.W., Diaz-Montero M., Gastman B.R. Tumor-derived exosomes induce CD8+ T cell suppressors. Journal for ImmunoTherapy of Cancer, 2017, vol. 5, art. 65. DOI: https://doi.org/10.1186/s40425-017-0269-7
32. Mittelbrunn M., Gutiérrez-Vázquez C., Villarroya-Beltri C., González S., Sánchez-Cabo F., González M.Á., Bernad A., Sánchez-Madrid F. Unidirectional transfer of microRNA-loaded exosomes from T cells to antigen-presenting cells. Nat. Commun., 2011, vol. 2, art. 282. DOI: https://doi.org/10.1038/ncomms1285
33. Sheldon H., Heikamp E., Turley H., Dragovic R., Thomas P., Oon C.E., Leek R., Edelmann M., Kessler B., Sainson R.C., Sargent I., Li J.-L., Harris A. New mechanism for Notch signaling to endothelium at a distance by Delta-like 4 incorporation into exosomes. Blood, 2010, vol. 116, no. 13, pp. 2385–2394. DOI: https://doi.org/10.1182/blood-2009-08-239228
34. Brzozova M., Wojnicz R., Kowalczyk-Ziomek G., Helewski K. The Notch ligand Delta-like 4 (DLL4) as a target in angiogenesis-based cancer therapy? Contemp. Oncol., 2013, vol. 17, no. 3, pp. 234–237. DOI: https://doi.org/10.5114/wo.2013.35588
35. Yan H., Cai X., Zhang J., Zhao H., Wu H., Zhang J., Xu L., Liu S., Zang Y., Fu S. Gastric cancer cell-derived exosomal miRNA-128-3p promotes angiogenesis by targeting SASH1. Front Oncol., 2024, vol. 14, art. 1440996. DOI: https://doi.org/10.3389/fonc.2024.1440996
36. Tian Y., Gao X., Yang X., Chen S., Ren Y. VEGFA contributes to tumor property of glioblastoma cells by promoting differentiation of myeloid-derived suppressor cells. BMC Cancer, 2024, vol. 24, art. 1040. DOI: https://doi.org/10.1186/s12885-024-12803-8
37. Kim Y.E., Kim J.S., Shin M.J., Lee S.Y., Kim D.K., Lee N.K., Kwon Y.W., Choi K.U., Suh D.S., Kim B.S., Jeong S., Kim J.H. Identification of CD109 in the extracellular vesicles derived from ovarian cancer stem-like cells. BMB Rep., 2024, vol. 57, no. 12, art. 527–532. DOI: https://doi.org/10.5483/bmbrep.2024-0012
38. Zhang Q., Han L., Luo X., Bao Y., Wang S., Li T., Huo J., Meng X. Enhancing inhibitory effect in SMMC-7721 hepatoma cells through combined treatment of gallic acid and hUC-MSCs-Exos. Int. Immunopharmacol., 2025, vol. 144, art. 113704. DOI: https://doi.org/10.1016/j.intimp.2024.113704
39. Zhang S., Lu X., Chen J., Xiong S., Cui Y., Wang S., Yue C., Han Q., Yang B. Promotion of an-giogenesis and suppression of inflammatory response in skin wound healing using exosome-loaded collagen sponge. Front. Immunol., 2024, vol. 15, art. 1511526. DOI: https://doi.org/10.3389/fimmu.2024.1511526
40. Zhang C., Bao L.R., Yang Y.T., Wang Z., Li Y. Role of M2 macrophage exosomes in osteogenic differentiation of mouse bone marrow mesenchymal stem cells under high-glucose and high-insulin. Journal of Sichuan University (Medical Sciences), 2022, vol. 53, no. 1, pp. 63–70. DOI: https://doi.org/10.12182/20220160207
41. Łabędź-Masłowska A., Vergori L., Kędracka-Krok S., Karnas E., Bobis-Wozowicz S., Sekuła-Stryjewska M., Sarna M., Andriantsitohaina R., Zuba-Surma E.K. Mesenchymal stem cell-derived extracellular vesicles exert pro-angiogenic and pro-lymphangiogenic effects in ischemic tissues by transferring various microRNAs and proteins including ITGa5 and NRP1. J. Nanobiotechnology, 2024, vol. 22, art. 60. DOI: https://doi.org/10.1186/s12951-024-02304-y
42. Cho J.A., Park H., Lim E.H., Lee K.W. Exosomes from breast cancer cells can convert adipose tissue-derived mesenchymal stem cells into myofibroblast-like cells. Int. J. Oncol., 2012, vol. 40, no. 1, pp. 130–138. DOI: https://doi.org/10.3892/ijo.2011.1193
43. Protopapas A.A., Takardaki A., Protopapa N., Papagiouvanni I., Protopapas A.N., Skoura L., Savopoulos C., Goulis I. Microvesicle tissue factor procoagulant activity is elevated and correlated with disease severity in patients with cirrhosis. Liver Int., 2024, vol. 45, no. 4, art. e16192. DOI: https://doi.org/10.1111/liv.16192
44. Madkhali A.M., Mobarki A.A., Ghzwani A.H., Al-Mekhlafi H.M., Zhranei A., Osais A., Sohel A., Othman B., Dobie G., Hamali H.A. Elevated levels of procoagulant microvesicles and tissue-factor bearing microvesicles in malaria patients. Int. J. Gen. Med., 2023, vol. 16, pp. 1205–1215. DOI: https://doi.org/10.2147/IJGM.S402212
45. Al-Nedawi K., Meehan B., Micallef J., Lhotak V., May L., Guha A., Rak J. Intercellular transfer of the oncogenic receptor EGFRvIII by microvesicles derived from tumour cells. Nat. Cell. Biol., 2008, vol. 10, pp. 619–624. DOI: https://doi.org/10.1038/ncb1725
46. Yamada N., Tsujimura N., Kumazaki M., Shinohara H., Taniguchi K., Nakagawa Y., Naoe T., Akao Y. Colorectal cancer cell-derived microvesicles containing microRNA-1246 promote an-giogenesis by activating Smad 1/5/8 signaling elicited by PML down-regulation in endothelial cells. Biochim. Biophys. Acta., 2014, vol. 1839, no. 11, pp. 1256–1272. DOI: https://doi.org/10.1016/j.bbagrm.2014.09.002
47. Kassassir H., Papiewska-Pająk I., Kryczka J., Boncela J., Kowalska M.A. Platelet-derived microparticles stimulate the invasiveness of colorectal cancer cells via the p38MAPK-MMP-2/MMP-9 axis. Cell. Commun. Signal., 2023, vol. 21, art. 51. DOI: https://doi.org/10.1186/s12964-023-01066-8
48. Dujardin S., Bégard S., Caillierez R., Lachaud C., Delattre L., Carrier S., Loyens A., Galas M.C., Bousset L., Melki R., Aurégan G., Hantraye P., Brouillet E., Buée L., Colin M. Ectosomes: a new mechanism for non-exosomal secretion of tau protein. PLoS One., 2014, vol. 9, no. 6, art. e100760. DOI: https://doi.org/10.1371/journal.pone.0100760
49. Joshi P., Turola E., Ruiz A., Bergami A., Libera D.D., Benussi L., Giussani P., Magnani G., Comi G., Legname G., Ghidoni R., Furlan R., Matteoli M., Verderio C. Microglia convert aggregated amyloid-β into neurotoxic forms through the shedding of microvesicles. Cell Death Differ, 2014, vol. 21, pp. 582–593. DOI: https://doi.org/10.1038/cdd.2013.180
50. Lehner G.F., Harler U., Haller V.M., Feistritzer C., Hasslacher J., Dunzendorfer S., Bellmann R., Joannidis M. Characterization of microvesicles in septic shock using high-sensitivity flow cytometry. Shock, 2016, vol. 46, no. 4, pp. 373–381. DOI: https://doi.org/10.1097/SHK.0000000000000657
51. Cheng V., Kashyap S.R., Schauer P.R., Kirwan J.P., McCrae K.R. Restoration of glycemic control in patients with type 2 diabetes mellitus after bariatric surgery is associated with reduction in microparticles. Surg. Obes. Relat. Dis., 2013, vol. 9, no. 2, pp. 207–212. DOI: https://doi.org/10.1016/j.soard.2011.09.026
52. Zacharia E., Antonopoulos A.S., Oikonomou E., Papageorgiou N., Pallantza Z., Miliou A., Mystakidi V.C., Simantiris S., Kriebardis A., Orologas N., Valasiadi E., Papaioannou S., Galiatsatos N., Antoniades C., Tousoulis D. Plasma signature of apoptotic microvesicles is associated with endothelial dysfunction and plaque rupture in acute coronary syndromes. J. Mol. Cell. Cardiol., 2020, vol. 138, pp. 110–114. DOI: https://doi.org/10.1016/j.yjmcc.2019.11.153
53. Diehl P., Nienaber F., Zaldivia M.T.K., Stamm J., Siegel P.M., Mellett N.A., Wessinger M., Wang X., McFadyen J.D., Bassler N., Puetz G., Htun N.M., Braig D., Habersberger J., Helbing T., Eisenhardt S.U., Fuller M., Bode C., Meikle P.J., Chen Y.C., Peter K. Lysophosphatidylcholine is a major component of platelet microvesicles promoting platelet activation and reporting atherosclerotic plaque instability. Thromb. Haemost., 2019, vol. 119, no. 8, pp. 1295–1310. DOI: https://doi.org/10.1055/s-0039-1683409
54. Chiva-Blanch G., Suades R., Crespo J., Vilahur G., Arderiu G., Padró T., Corella D., Salas-Salvadó J., Arós F., Martínez-González M.A., Ros E., Fitó M., Estruch R., Badimon L. CD3(+)/CD45(+) and SMA-α(+) circulating microparticles are increased in individuals at high cardiovascular risk who will develop a major cardiovascular event. Int. J. Cardiol., 2016, vol. 208, pp. 147–149. DOI: https://doi.org/10.1016/j.ijcard.2016.01.211
55. Suades R., Padró T., Crespo J., Ramaiola I., Martin-Yuste V., Sabaté M., Sans-Roselló J., Sionis A., Badimon L. Circulating microparticle signature in coronary and peripheral blood of ST elevation myocardial infarction patients in relation to pain-to-PCI elapsed time. Int. J. Cardiol., 2016, vol. 202, pp. 378–387. DOI: https://doi.org/10.1016/j.ijcard.2015.09.011
56. Chiva-Blanch G., Bratseth V., Ritschel V., Andersen G.Ø., Halvorsen S., Eritsland J., Arnesen H., Badimon L., Seljeflot I. Monocyte-derived circulating microparticles (CD14+, CD14+/CD11b+ and CD14+/CD142+) are related to long-term prognosis for cardiovascular mortality in STEMI patients. Int. J. Cardiol., 2017, vol. 15(227), pp. 876–881. DOI: https://doi.org/10.1016/j.ijcard.2016.11.302
57. Walsh K.B., Campos B., Hart K., Thakar C., Adeoye O. M2 monocyte microparticles are increased in intracerebral hemorrhage. J. Stroke Cerebrovasc. Dis., 2017, vol. 26, no. 10, pp. 2369–2375. DOI: https://doi.org/10.1016/j.jstrokecerebrovasdis.2017.05.027
58. Poon I.K.H, Parkes M.A.F, Jiang L., Atkin-Smith G.K.., Tixeira R, Gregory C.D., Ozkocak D.C., Rutter S.F., Caruso S., Santavanond J.P., Paone S., Shi B., Hodge A.L., Hulett M.D., Chow J.D.Y., Phan T.K., Baxter A.A. Moving beyond size and phosphatidylserine exposure: evidence for a diversi-ty of apoptotic cell-derived extracellular vesicles in vitro. J. Extracell. Vesicles, 2019, vol. 8, no. 1, art. 1608786. DOI: https://doi.org/10.1080/20013078.2019.1608786
59. Santavanond J.P., Rutter S.F., Atkin-Smith G.K., Poon I.K.H. Apoptotic bodies: mechanism of formation, isolation and functional relevance. Subcell. Biochem., 2021, vol. 97, pp. 61–88. DOI: https://doi.org/10.1007/978-3-030-67171-6_4
60. Jiang L., Paone S., Caruso S., Atkin-Smith G.K., Phan T.K., Hulett M.D., Poon I.K.H. Determining the contents and cell origins of apoptotic bodies by flow cytometry. Sc.i Rep., 2017, vol. 7, art. 14444. DOI: https://doi.org/10.1038/s41598-017-14305-z
61. Akers J.C., Gonda D., Kim R., Carter B.S., Chen C.C. Biogenesis of extracellular vesicles (EV): exosomes, microvesicles, retrovirus-like vesicles, and apoptotic bodies. J. Neurooncol., 2013, vol. 113, pp. 1–11. DOI: https://doi.org/10.1007/s11060-013-1084-8
62. Tyukavin A.I., Belostotskaya G.B., Zakharov Е.А., Ivkin D.Y., Rad'ko S.V., Knyazev N.A., Klimenko V.V., Bogdanov A.A., Suchkov S.V. Apoptotic bodies of cardiomyocytes and fibroblasts – regulators of directed differentiation of heart stem cells. Bull. Exp. Biol. Med., 2020, vol. 170, pp. 112–117. DOI: https://doi.org/10.1007/s10517-020-05015-0
63. Li M., Xiaotao X., Huang H., Liang C., Gao X., Qi T., Xun X., Yang J., Liao L., Weidong T. The role of apoptotic bodies from different stages of apoptosis in maintaining the vitality of BMSCs. Preprint, v. 1. Res. Square, 2021. DOI: https://doi.org/10.21203/rs.3.rs-643891/v1
64. Li Z., Wu M., Liu S., Liu X., Huan Y., Ye Q., Yang X., Guo H., Liu A., Huang X., Yang X., Ding F., Xu H., Zhou J., Liu P., Liu S.., Jin Y., Xuan K. Apoptotic vesicles activate autophagy in recipient cells to induce angiogenesis and dental pulp regeneration. Mol. Ther., 2022, vol. 30, no. 10, pp. 3193–3208. DOI: https://doi.org/10.1016/j.ymthe.2022.05.006
65. Hristov M., Erl W., Linder S., Weber P.C. Apoptotic bodies from endothelial cells enhance the number and initiate the differentiation of human endothelial progenitor cells in vitro. Blood, 2004, vol. 104, no. 9, pp. 2761–2766. DOI: https://doi.org/10.1182/blood-2003-10-3614
66. Caruso S., Poon I.K.H. Apoptotic cell-derived extracellular vesicles: more than just debris. Front. Immunol., 2018, vol. 9, art. 1486. DOI: https://doi.org/10.3389/fimmu.2018.01486
67. Wang D., Shen Y., Qian H., Jiang J., Xu W. Emerging advanced approaches for liquid biopsy: in situ nucleic acid assays of extracellular vesicles. Theranostics, 2024, vol. 14, no. 19, pp. 7309–7332. DOI: https://doi.org/10.7150/thno.102437
68. Charles S., Fatrara T., Bouriche T., Bonifay A., Lecompte T., Dignat-George F., Tardy B., Frere C., Lacroix R., Chalayer E. Tissue factor-bearing extracellular vesicles, procoagulant phospholipids and D-dimer as potential biomarkers for venous thromboembolism in patients with newly diagnosed multiple myeloma: A comprehensive analysis. Thromb. Res., 2025, vol. 10, no. 247, art. 109256. DOI: https://doi.org/10.1016/j.thromres.2025.109256
69. Bang O.Y., Kim E.H., Oh M.J., Yoo J., Oh G.S., Chung J.W., Seo W.K., Kim G.M., Ahn M.J., Yang S.W. Circulating extracellular-vesicle-incorporated microRNAs as potential biomarkers for ischemic stroke in patients with cancer. J. Stroke, 2023, vol. 25, no. 2, pp. 251–265. DOI: https://doi.org/10.5853/jos.2022.02327
70. Guo Y., Luo S., Liu S., Yang C., Lv W., Liang Y., Ji T., Li W., Liu C., Li X., Zheng L., Zhang Y. Bimodal in situ analyzer for circular RNA in extracellular vesicles combined with machine learning for accurate gastric cancer detection. Adv. Sci., 2025, vol. 12, no. 15, art. 2409202. DOI: https://doi.org/10.1002/advs.202409202
71. Ye M., Mou L., Feng J., Wu L., Jin D., Hu X., Xu Q., Shu Y. Aptamer-proximity ligation coupled with rolling circle amplification strategy for an ultrasensitive analysis of tumor-derived extracellular vesicles PD-L1. Anal. Chem., 2025, vol. 97, no. 4, pp. 2343–2350. DOI: https://doi.org/10.1021/acs.analchem.4c05700
72. Gu X., Hou J., Weng R., Rao J., Liu S. The diagnosis and prognosis value of circulating exosomal lncRNA MALAT1 and LNC_000226 in patients with acute myocardial infarction: an observational study. Immun. Inflamm. Dis., 2024, vol. 12, no. 12, art. e70088. DOI: https://doi.org/10.1002/iid3.70088
73. Kuwabara Y., Ono K., Horie T., Nishi H., Nagao K., Kinoshita M., Watanabe S., Baba O., Kojima Y., Shizuta S., Imai M., Tamura T., Kita T., Kimura T. Increased microRNA-1 and microRNA-133a levels in serum of patients with cardiovascular disease indicate myocardial damage. Circ. Cardiovasc. Genet., 2011, vol. 4, no. 4, pp. 446–454. DOI: https://doi.org/10.1161/CIRCGENETICS.110.958975
74. Gu J., You J., Liang H., Zhan J., Gu X., Zhu Y. Engineered bone marrow mesenchymal stem cell-derived exosomes loaded with miR302 through the cardiomyocyte specific peptide can reduce myocardial ischemia and reperfusion (I/R) injury. J. Transl. Med., 2024, vol. 22, art. 168. DOI: https://doi.org/10.1186/s12967-024-04981-7
75. Chiu Y.S., Wu K.J., Yu S.J., Wu K.L., Hsieh C.Y., Chou Y.S., Chen K.Y., Wang Y.S., Bae E.K., Hung T.W., Lin S.H., Lin C.H., Hsu S.C., Wang Y., Chen Y.H. Transplantation of exosomes derived from human Wharton's jelly mesenchymal stromal cells enhances functional improvement in stroke rats. Cell Transplant., 2024, vol. 33. DOI: https://doi.org/10.1177/09636897241296366
76. Santos P., Almeida F. Exosome-based vaccines: history, current state, and clinical trials. Front. Immunol., 2021, vol. 12, art. 711565. DOI: https://doi.org/10.3389/fimmu.2021.711565
77. Zhao W., Li X., Guan J., Yan S., Teng L., Sun X., Dong Y., Wang H., Tao W. Potential and development of cellular vesicle vaccines in cancer immunotherapy. Discov. Oncol., 2025, vol. 16, art. 48. DOI: https://doi.org/10.1007/s12672-025-01781-3
78. Zoua T., Lu J., Zhu Y., Xu Y., Sun Y. Mesenchymal stem cell-derived exosomes improved septic lung injury by reducing excessive NETs formation and alleviating inflammatory response. Allergol. Immunopathol., 2025, vol. 53, no. 1, pp. 63–68. DOI: https://doi.org/10.15586/aei.v53i1.1238
79. Thiruvenkataramani R.P., Abdul-Hafez A., Kesaraju T., Mohamed H., Ibrahim S.A., Othman A., Arif H., Zarea A.A., Abdulmageed M., Arellano M.G., Mohamed T., Kanada M., Madhukar B.V., Omar S.A. Small extracellular vesicles derived from cord blood plasma and placental mesenchymal stem cells attenuate acute lung injury induced by lipopolysaccharide (LPS). Int. J. Mol. Sci., 2024, vol. 26, no. 1, art. 75. DOI: https://doi.org/10.3390/ijms26010075
80. Yang J., Kang H., Liu Y., Lu S., Wu H., Zhang B., He Y., Zhou W. Harnessing tumor cell-derived exosomes for immune rejection management in corneal transplantation. Adv. Sci., 2025, vol. 12, no. 2, art. 2409207. DOI: https://doi.org/10.1002/advs.202409207
81. Zheng L., Han S., Enriquez J., Martinez O.M., Krams S.M. Graft-derived extracellular vesicles transport miRNAs to modulate macrophage polarization after heart transplantation. Am. J. Transplant., 2024, vol. 25, no. 4, pp. 682–694. DOI: https://doi.org/10.1016/j.ajt.2024.11.021
82. Figueroa-Valdés A.I., Luz-Crawford P., Herrera-Luna Y., Georges-Calderón N., García C., Tobar H.E., Araya M.J., Matas J., Donoso-Meneses D., de la Fuente C., Cuenca J., Parra E., Lillo F., Varela C., Cádiz M.I., Vernal R., Ortloff A., Nardocci G., Castañeda V., Adasme-Vidal C., Kunze-Küllmer M., Hidalgo Y., Espinoza F., Khoury M., Alcayaga-Miranda F. Clinical-grade extracellular vesicles derived from umbilical cord mesenchymal stromal cells: preclinical development and first-in-human intra-articular validation as therapeutics for knee osteoarthritis. J. Nanobiotechnology, 2025, vol. 23, art. 13. DOI: https://doi.org/10.1186/s12951-024-03088-x
83. Yang F., Ni B., Liang X., He Y., Yuan C., Chu J., Huang Y., Zhong H., Yang L., Lu J., Xu Y., Zhang Q., Chen W. Mesenchymal stromal cell-derived extracellular vesicles as nanotherapeutics for concanavalin a-induced hepatitis: modulating the gut‒liver axis. Stem. Cell. Res. Ther., 2025, vol. 16, art. 4. DOI: https://doi.org/10.1186/s13287-024-04013-7
84. Yuan M., Ma W., Liu B., Zou X., Huang B., Tian X., Jin Y., Zheng N., Wu Z., Wang Y. Delivery of therapeutic RNA by extracellular vesicles derived from Saccharomyces cerevisiae for medicine applications. J. Pharm. Sci., 2024, vol. 113, no. 12, pp. 3574–3585. DOI: https://doi.org/10.1016/j.xphs.2024.10.035
85. Almeria C., Weiss R., Keck M., Weber V., Kasper C., Egger D. Dynamic cultivation of human mesenchymal stem/stromal cells for the production of extracellular vesicles in a 3D bioreactor system. Biotechnol. Lett., 2024, vol. 46, pp. 279–293. DOI: https://doi.org/10.1007/s10529-024-03465-4
Загрузки
Опубликован
Выпуск
Раздел
Лицензия
Copyright (c) 2025 Сергей Петрович Щава

Это произведение доступно по лицензии Creative Commons «Attribution-NonCommercial-NoDerivatives» («Атрибуция — Некоммерческое использование — Без производных произведений») 4.0 Всемирная.