Гидрогелевые раневые покрытия из синтетических полимеров: текущее состояние и ближайшие перспективы

Авторы

  • Екатерина Александровна Чингизова Тихоокеанский институт биоорганической химии им. Г.Б. Елякова ДВО РАН; Государственный научно-исследовательский испытательный институт военной медицины https://orcid.org/0000-0003-0093-5757
  • Владимир Николаевич Котельников Государственный научно-исследовательский испытательный институт военной медицины; Дальневосточный федеральный университет https://orcid.org/0000-0001-5830-1322
  • Игорь Алексеевич Шперлинг Государственный научно-исследовательский испытательный институт военной медицины https://orcid.org/0000-0002-7029-8602
  • Борис Израилевич Гельцер Дальневосточный федеральный университет https://orcid.org/0000-0002-9250-557X

Ключевые слова:

гидрогели, заживление ран, карбоксиметилцеллюлоза, поливиниловый спирт, раневые покрытия, синтетические полимеры

Аннотация

Цель исследования – обобщение научных данных по гидрогелевым раневым покрытиям, состоящим из синтетических полимеров, на примере из наиболее применимых на практике карбоксиметилцеллюлозы (КМЦ) и поливинилового спирта (ПВС). Для успешного лечения ран необходимо создание такого покрытия, которое способно все время «подстраиваться» под изменения, происходящие в ране. Гидрогели являются перспективными субстанциями для создания «идеального» раневого покрытия благодаря целому ряду уникальных физико-химических свойств в этих гидрофильных макромолекулярных сетях. Эти типы покрытий обладают высокой прочностью и пластичностью, что позволяет плотно прилегать к неровному краю раны и быть прочно зафиксированными, что снижает риск инфицирования при сохранении оптимального воздухообмена. Гидрогели из КМЦ и ПВС способны пролонгировать действие введенных в них биологически активных веществ и являются прозрачными, что позволяет контролировать заживление раны, а также биосовместимы и биоразлагаемы. Недорогие и широкодоступные синтетические полимеры КМЦ и ПВС являются перспективной основой для создания гидрогелевых раневых покрытий.

Биографии авторов

  • Екатерина Александровна Чингизова, Тихоокеанский институт биоорганической химии им. Г.Б. Елякова ДВО РАН; Государственный научно-исследовательский испытательный институт военной медицины

    кандидат биологических наук, научный сотрудник лаборатории биоиспытаний и механизма действия биологически активных веществ 

  • Владимир Николаевич Котельников, Государственный научно-исследовательский испытательный институт военной медицины; Дальневосточный федеральный университет

    доктор медицинских наук, профессор, начальник Дальневосточного филиала ГНИИВМ; профессор клинического департамента Школы медицины и наук о жизни 

  • Игорь Алексеевич Шперлинг, Государственный научно-исследовательский испытательный институт военной медицины

    доктор медицинских наук, профессор, заместитель начальника научно-исследовательского испытательного центра

  • Борис Израилевич Гельцер, Дальневосточный федеральный университет

    доктор медицинских наук, профессор, член-корреспондент РАН; заместитель директора по науке Школы медицины и наук о жизни

Библиографические ссылки

1. Weller C.D., Team V., Sussman G. First‐line interactive wound dressing update: a comprehensive review of the evidence. Frontier in Pharmacology, 2020, vol. 11, art. 155. DOI: https://doi.org/10.3389/fphar.2020.00155

2. Andryukov B.G., Besednova N.N., Kuznetsova T.A., Zaporozhets T.S., Ermakova S.P., Zvya-gintseva T.N., Chingizova E.A., Gazha A.K., Smolina T.P. Sulfated polysaccharides from marine algae as a basis of modern biotechnologies for creating wound dressings: current achievements and future prospects. Biomedicines, 2020, vol. 8, no. 9, art. 301. DOI: https://doi.org/10.3390/biomedicines8090301

3. Kuznetsova T.A., Andryukov B.G., Besednova N.N., Zaporozhets T.S., Kalinin A.V. Marine algae polysaccharides as basis for wound dressings, drug delivery, and tissue engineering: a review. Journal of Marine Science and Engineering, 2020, vol. 8, no. 7, art. 481. DOI: https://doi.org/10.3390/jmse8070481

4. Никитин В.Г. Инновационные средства местного лечения ран // Сахарный диабет. 2007. № 3. С. 69–73. EDN: ICFNVF = Nikitin V.G. Innovative means of local treatment of wounds. Diabetes Mellitus, 2007, no. 3, pp. 69–73. (In Russ.).

5. Соловьева О.В. Современные перевязочные средства для лечения ран // VetPharma. 2012. № 4(9). С. 42–43. = Solovieva O.V. Modern dressings for wound treatment. VetPharma, 2012, no. 4(9), pp. 42–43. (In Russ.).

6. Dhivya S., Padma V.V., Elango S. Wound dressings – a review. Biomed, 2015, vol. 5, no. 4, art. 22. DOI: https://doi.org/10.7603/s40681-015-0022-9

7. Mayet N., Choonara Y.E., Kumar P., Tomar L.K., Tyagi C., Du Toit L.C. A comprehensive review of advanced biopolymeric wound healing systems. Journal of Pharmaceutical Sciences, 2014, vol. 103, no. 8, pp. 2211–2230. DOI: https://doi.org/10.1002/jps.24068

8. Basu P., Repanas A., Chatterjee A., Glasmacher B., Narendra Kumar U., Manjubala I. PEO–CMC blend nanofibers fabrication by electrospinning for soft tissue engineering applications. Materials Letters, 2017, vol. 195, pp. 10–13. DOI: https://doi.org/10.1016/j.matlet.2017.02.065

9. Dreifke M.B., Jayasuriya A.A., Jayasuriya A.C. Current wound healing procedures and potential care. Materials Science and Engineering: C, 2015, vol. 48, pp. 651–662. DOI: https://doi.org/10.1016/j.msec.2014.12.068

10. Sahana T.G., Rekha P.D. Biopolymers: Applications in wound healing and skin tissue engineering. Molecular Biology Reports, 2018, vol. 45, pp. 2857–2867. DOI: https://doi.org/10.1007/s11033-018-4296-3

11. Boateng J.S., Catanzano O. Advanced therapeutic dressings for effective wound healing – a review. Journal of Pharmaceutical Sciences, 2015, vol. 104, no. 11, pp. 3653–3680. DOI: https://doi.org/10.1002/jps.24610

12. Krishna P.S., Sudha S., Reddy K.A., Al‐Dhabaan F.A., Meher, Prakasham R.S., Singara Charya M.S. Studies on wound healing potential of red pigment isolated from marine Bacterium Vibrio sp. Saudi Journal of Biological Sciences, 2019, vol. 26, pp. 723–729. DOI: https://doi.org/10.1016/j.sjbs.2017.11.035

13. Es‐Haghi A., Mashreghi M., Bazaz M.R., Homayouni‐Tabrizi M., Darroudi M. Fabrication of biopolymer based nanocomposite wound dressing: evaluation of wound healing properties and wound microbial load. IET Nanobiotechnology, 2017, vol. 11, no. 5, pp. 517–522. DOI: https://doi.org/10.1049/iet-nbt.2016.0160

14. Liu C., Zhu Y., Lun X., Sheng H., Yan A. Effects of wound dressing based on the combination of silver-curcumin nanoparticles and electrospun chitosan nanofibers on wound healing. Bioengineered, 2022, vol. 13, no. 2, pp. 4328–4339. DOI: https://doi.org/10.1080/21655979.2022.2031415

15. Qian Z., Bai Y., Zhou J., Li L., Na J., Fan Y., Guo X., Liu H.J. A moisturizing chitosan-silk fibroin dressing with silver nanoparticles-adsorbed exosomes for repairing infected wounds. Journal of Materials Chemistry B, 2020, vol. 32, no. 8, pp. 7197–7212. DOI: https://doi.org/10.1039/d0tb01100b

16. Masood N., Ahmed R., Tariq M., Ahmed Z., Masoud M. S., Ali I., Asghar R., Andleeb A., Hasan A. Silver nanoparticle impregnated chitosan-PEG hydrogel enhances wound healing in diabetes indu- ced rabbits. International Journal of Pharmaceutics, 2019, no. 559, pp. 23–36. DOI: https://doi.org/10.1016/j.ijpharm.2019.01.019

17. Alavi M., Rai M. Recent progress in nanoformulations of silver nanoparticles with cellulose, chitosan, and alginic acid biopolymers for antibacterial applications. Applied Microbiology and Biotechnology, 2019, vol. 103, pp. 8669–8676. DOI: https://doi.org/10.1007/s00253-019-10126-4

18. Kumar S.S.D., Rajendran N.K., Houreld N.N., Abrahamse H. Recent advances on silver nanoparticle and biopolymer-based biomaterials for wound healing applications. International Journal of Biological Macromolecules, 2018, vol. 115, pp. 165–175. DOI: https://doi.org/10.1016/j.ijbiomac.2018.04.003

19. Agrawal P., Soni S., Mittal G., Bhatnagar A. Role of polymeric biomaterials as wound healing agents. The International Journal of Lower Extremity Wounds, 2014, vol. 13, no. 3, pp. 180–190. DOI: https://doi.org/10.1177/1534734614544523

20. Kannon G.A., Garrett A.B. Moist wound healing with occlusive dressings: a clinical review. Dermatolo-gic Surgery, 1995, vol. 21, no. 7, pp. 583–590. DOI: https://doi.org/10.1111/j.1524-4725.1995.tb00511.x

21. Lanel B., Barthès-Biesel D., Regnier C., Chauvé T. Swelling of hydrocolloid dressings. Biorheology, 1997, vol. 34, no. 2, pp. 139–153. DOI: https://doi.org/10.1016/S0006-355X(97)00010-3

22. Lloyd L.L., Kennedy J.F., Methacanon P., Paterson M., Knill C.J. Carbohydrate polymers as wound management aids. Carbohydrate Polymers, 1998, vol. 37, no. 3, pp. 315–322. DOI: https://doi.org/10.1016/S0144-8617(98)00077-0

23. Ahmed E.M. Hydrogel: preparation, characterization, and applications: a review. Journal of Advanced Research, 2015, vol. 6, no. 2, pp. 105–121. DOI: https://doi.org/10.1016/j.jare.2013.07.006

24. Chang C., Duan B., Cai J., Zhang L. Superabsorbent hydrogels based on cellulose for smart swelling and controllable delivery. European Polymer Journal, 2010, vol. 46, no. 1, pp. 92–100. DOI: https://doi.org/10.1016/j.eurpolymj.2009.04.033

25. Carvalho I.C., Mansur H.S. Engineered 3D-scaffolds of photocrosslinked chitosan-gelatin hydrogel hybrids for chronic wound dressings and regeneration. Materials Science and Engineering: C, 2017, vol. 78, pp. 690–705. DOI: https://doi.org/10.1016/j.msec.2017.04.126

26. Lee S., Park Y.H., Ki C.S. Fabrication of PEG-carboxymethylcellulose hydrogel by thiol-norbornene photo-click chemistry. International Journal of Biological Macromolecules, 2016, vol. 83, pp. 1–8. DOI: https://doi.org/10.1016/j.ijbiomac.2015.11.050

27. Zheng W.J., Gao J., Wei Z., Zhou J., Chen Y.M. Facile fabrication of self-healing carboxymethyl cellulose hydrogels. European Polymer Journal, 2015, vol. 72, pp. 514–522. DOI: https://doi.org/10.1016/j.eurpolymj.2015.06.013

28. Dang Q.F., Liu H., Yan J.Q., Liu C.S., Liu Y., Li J., Li J.J. Characterizations of collagen from haddock skin and wound healing properties of its hydrolysates. Biomedical Materials, 2015, vol. 10, no. 1, art. 015022. DOI: https://doi.org/10.1088/1748-6041/10/1/015022

29. Capanema N.S.V., Mansur A.A.P., Jesus A.C., Carvalho S.M., Oliveira L.C., Mansur H.S. Superabsorbent crosslinked carboxymethyl cellulose-PEG hydrogels for potential wound dressing applications. International Journal of Biological Macromolecules, 2018, vol. 106, pp. 1218–1234. DOI: https://doi.org/10.1016/j.ijbiomac.2017.08.124

30. Lee J.H., Lim S.J., Oh D.H. Ku S.K., Li D.X., Yong C.S., Choi H.G. Wound healing evaluation of sodium fucidate-loaded polyvinylalcohol/sodium carboxymethylcellulose-based wound dressing. Archives of Phar-macal Research, 2010, vol. 33, no. 7, pp. 1083–1089. DOI: https://doi.org/10.1007/s12272-010-0715-2

31. Wong T.W., Ramli N.A. Carboxymethylcellulose film for bacterial wound infection control and healing. Carbohydrate Polymers, 2014, vol. 112, pp. 367–375. DOI: https://doi.org/10.1016/j.carbpol.2014.06.002

32. Rakhshaei R., Namazi H. A potential bioactive wound dressing based on carboxymethyl cellulose/ZnO impregnated MCM-41 nanocomposite hydrogel. Materials Science and Engineering: C, 2017, vol. 73, pp. 456–464. DOI: https://doi.org/10.1016/j.msec.2016.12.097

33. Trevisol T.C., Fritz A.R.M. de Souza S.M.A.G.U., Bierhalz A.C.K., Valle J.A.B. Alginate and carboxymethyl cellulose in monolayer and bilayer films as wound dressings: effect of the polymer ratio. Journal of Applied Polymer Science, 2019, vol. 136, no. 3, art. 46941. DOI: https://doi.org/10.1002/app.46941

34. Park J.S., An S.J., Jeong S.I., Gwon H.J., Lim Y.M., Nho Y.C. Chestnut honey impregnated carboxymethyl cellulose hydrogel for diabetic ulcer healing. Polymers, 2017, vol. 9, no. 7, pp. 248. DOI: https://doi.org/10.3390/polym9070248

35. Vinklarkova L., Masteikova R., Vetchy D., Dolezel P., Bernatoniene J. Formulation of novel layered sodium carboxymethylcellulose film wound dressings with ibuprofen for alleviating wound pain. BioMed Research International, 2015, vol. 2015, no. 1, art. 892671. DOI: https://doi.org/10.1155/2015/892671

36. Gaaz T.S., Sulong A.B., Akhtar M.N., Kadhum A.A., Mohamad A.B., Al-Amiery A.A. Properties and applications of polyvinyl alcohol, halloysite nanotubes and their nanocomposites. Molecules, 2015, vol. 20, no. 12, pp. 22833–22847. DOI: https://doi.org/10.3390/molecules201219884

37. Chen Y.N., Jiao C., Zhao Y., Zhang J., Wang H. Self-assembled polyvinyl alcohol-tannic acid hydrogels with diverse microstructures and good mechanical properties. ACS Omega, 2018, vol. 3, no. 9, pp. 11788–11795. DOI: https://doi.org/10.1021/acsomega.8b02041

38. Лесовой Д.Е., Кузнецов Н.Ю., Артюхов А.А., Штильман М.И., Чудных С.М. Восстановительная терапия тяжелых дефицитов мягких тканей в экспериментальной ожоговой ране с использованием гидрагелевого раневого покрытия ММ-Гель-Р // Биомедицина. 2010. № 4. C. 33–39. EDN: NUVRWL = Lesovoy D.E., Kuznetsov N.Yu., Artyukhov A.A., Shtilman M.I., Chudnich S.M. Regeneration and reparative therapy of deep soft tissue debris in experimental burns with MM-Gel-F application as hydragel artificial skin. Biomedicine, 2010, no. 4, pp. 33–39. (In Russ.).

39. Farzinfar E., Paydayesh A. Investigation of polyvinyl alcohol nanocomposite hydrogels containing chitosan nanoparticles as wound dressing. International Journal of Polymeric Materials and Polymeric Biomaterials, 2019, vol. 68, no. 11, pp. 628–638. DOI: https://doi.org/10.1080/00914037.2018.1482463

40. Tavakoli J., Mirzaei S., Tang Y. Cost-effective double-layer hydrogel composites for wound dressing applications. Polymers, 2018, vol. 10, no. 3, art. 305. DOI: https://doi.org/10.3390/polym10030305

41. Lim K.S., Alves M.H., Poole-Warren L.A., Martens P.J. Covalent incorporation of non-chemically modified gelatin into degradable PVA-tyramine hydrogels. Biomaterials, 2013, vol. 34, no. 29, pp. 7097–7105. DOI: https://doi.org/10.1016/j.biomaterials.2013.06.005

42. Gao T., Jiang M., Liu X., You G., Wang W., Sun Z., Ma A., Chen J. Patterned polyvinyl alcohol hydrogel dressings with stem cells seeded for wound healing. Polymers, 2019, vol. 11, no. 1, art. 171. DOI: https://doi.org/10.3390/polym11010171

43. Napavichayanun S., Bonani W., Yang Y., Motta A., Aramwit P. Fibroin and polyvinyl alcohol hydrogel wound dressing containing silk sericin prepared using high-pressure carbon dioxide. Advances in Wound Care, 2019, vol. 8, no. 9, pp. 452–462. DOI: https://doi.org/10.1089/wound.2018.0856

44. Lin S.P., Lo K.Y., Tseng T.N., Liu J.M., Shih T.Y., Cheng K.C. Evaluation of PVA/dextran/chitosan hydrogel for wound dressing. Cellular Polymers, 2019, vol. 38, no. 1–2, pp. 15–30. DOI: https://doi.org/10.1177/0262489319839211

Загрузки

Опубликован

20.02.2025

Выпуск

Раздел

ФИЗИОЛОГИЯ

Как цитировать

Гидрогелевые раневые покрытия из синтетических полимеров: текущее состояние и ближайшие перспективы. (2025). Клиническая и фундаментальная медицина, 1(1), 5–15. https://journals.dvfu.ru/clinfundmed/article/view/1210

Наиболее читаемые статьи этого автора (авторов)