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AHHOTauus

Knacmepnoiti  ananuz  wupoxko ucnonvsyemcs
6 PA3UYHBIX HAYYHBIX U NPAKMUYecKux oona-
CMSX, CA3AHHBIX C AHAIUZOM OAHHBIX. DMO 8aiC-
HbIU UHCIPYMEHmM O peuieHus 3a0ay 8 Mmakux
obnacmsx, Kax mawunnoe odyuyenue, obpabomra
us0bpasicenull, pacnozuasauue mexcma u m.o.
Omcymcemeue HaOIIOOeHUll He 8ce20a O3HaAYaem
omcymcmeue uxgopmayuu, nod3momy npeono.na-
2aemcsi, Yymo Haauyue npooenos 8 OAHHLIX, HAIU-
yue “nycmulx”’ Kiacmepos, makice Hecém 8 cebe
ungopmayuro 06 o0Ovekme ucciedo8aHus, Kax
U peanvivle HabaOO0eHus. B smom uccredosanuu
npeonoiazsaemcs, uYmo Mbl He HaAOI0O0deM He
MONLKO NEPEeMEHHYI0, HO U yeavlii Habop 006bvek-
mos, obpasyrowux omoenvHull Kiacmep. Taxum
0bpaszom, npeononazaemcs, 4mo OMmMCYmcmeyio-
ujee 8 OAHHBLIX — MO He aKkm OmMCymcmeus Kia-
cmepa 06vbeKmos KaKk maxKo80o2o, a NOMeHYUaIbHO
cywecmeyiowue 00veKmvl, KOmopwvle Omcym-
cmeyrom 8 Hawell gvlbopke. [lpedracaemcs aneo-
pumm 01 onpedeieHUs NOMEHYUAIbHbIX Ty-
cmulx” kracmepog 0Jisi 0OHOMEPHBIX U 08YMEPHBIX
Habopo8 OAHHLIX, YUUMBIBAs. UX pA3Mep U PACHO-
JIOJCEHUE 8 NPOCMPAHCHEE NPUSHAKO8 8 3A8UCU-
MOCMU OM UCXOOHO020 pachnpedeieHus 8blOOPOK.
Peanuzosan memoo sanonnenus smux npobenos
U OYEeHKU CMeWeHUs YeHMPOUOd08 Ha4aibHOU Kid-
cmepuzayuu npu yyéme nycmozo kiacmepa. llpo-
O0EeMOHCMPUPOBAHO NPUMEHEHUE DMO20 N00X00d
07151 YOaneHus: 8b10POCO8 U3 OAHHbIX.
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Clustering with Empty Clusters

Henry 1. Penikas, Yury Yu. Festa

Abstract

Cluster analysis is widely used in various scientific and practical fields related to data
analysis. It is an important tool for solving problems in such areas as machine learning,
image processing, text recognition, etc. The absence of observations is not always the
absence of information, therefore it is assumed that the presence of gaps in the data,
the presence of “empty” clusters, also carries information about the object of study,
as well as real observations. In this study, it is assumed that we do not observe not only
a variable, but a whole set of objects forming a separate cluster. Thus, it is assumed
that the missing in data is not the fact of the missing of a cluster of objects as such,
but potentially existing objects that are absent from our selection. An algorithm is
proposed to determine potential "empty" clusters for one-dimensional and two-
dimensional data sets, taking into account their size and location in the feature space,
depending on the initial distribution of samples. A method is implemented to fill in
these gaps and estimate the displacement of the centroids of the initial clustering
when taking into account an empty cluster. The application of this approach to rid
the data of outliers is demonstrated.

1. Introduction

We come across empty clusters more often than imagine. Sometimes
they are easily predefined when we have integer values for the classifying
indicators. However, when the classifying attributes may take on floating
values, thinking of empty clusters is not easy.

Let us illustrate the problem setting with the easiest case. Suppose we
have relative grading for students. Relative means that each student earns
ascore during one’s education term. When compared to the peers the
teacher derives the ultimate mark. Suppose the score ranges from 0 to 10, so
does the final mark. Let the teacher receive a score concentration similar to
Figure 1. If one tried to cluster observations, most probably one is to end
with two options: two or six clusters.

The major shortcoming here is that the teacher is expected to grade the
person having a score of 5 just one mark lower, than the student having
ascore of 8, because 5 and 8 obviously belong to different clusters.
However, we see that there is large gap (unconcentrated points, missings) on
the horizontal axis for the scores of 6 and 7. This means that the student
with 5 scores in our case should be graded with 5 as a mark and not 7 if we
grade 8 scores with a mark of 8. However, none of the existing clustering
procedures allows an ML practitioner to identify these empty clusters in
around 6 and (or) 7 from Figure 1. We intend to start closing this gap.

The purpose of the work is to propose an algorithm that performs
clustering for a priori a given number of clusters, demonstrates an area from
an “empty” cluster and conducts the procedure for implementing a new
cluster. That is why our objective is to start from the baseline case and
suggest an algorithm that runs one-dimensional and two-dimensional
clustering for a given number of clusters and demonstrates the domain of an
empty cluster.
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Figure 1: Simulated Data Without Noise

We structure our paper as follows, Section 2 reviews the literature.
Section 3 describes the simulated (artificial) dataset. Section 4 presents the
suggested methodology. The findings are reported in Section 5. Section
6 concludes.

2. Literature review

It is worth discussing the progress in two areas prior to identifying the
empty clusters. First, we think of the probable nature of missing data in
subsection 2.1. Second, we describe the accumulated knowledge on how to
treat empty clusters in subsection 2.2.

2.1. Missing data types: MCAR, MAR, MNAR every data scientist
comes across missing data in their studies. The generally accepted
classification of missing data has been proposed by Rubin (1976). It
proposes a classification of missing data based on the probabilistic nature of
these missings. Missing data is classified as MCAR (missing completely at
random) if missing occurs as a result of events that lead to the systematic
absence of any particular element in the data. They are independent of the
observed parameters and variables and occur completely randomly, i.e., the
probability of missing for each element in the data is the same and gaps
must be distributed randomly in the data.

Missing data is classified as MAR (missing at random) when missing
elements in data arrays are not completely random, but arise due to certain
patterns. The probability of missing an element can be determined based on
other information available in the set that does not contain omissions. The
exclusion or replacement of a missing element with a certain value does not
lead to a significant distortion of the results and can be fully explained by
variables for which complete information is available, that is, calculated
relative to other features with varying degrees of confidence.

If the missing data does not fall under the previous categories, then we
are dealing with MNAR (missing not at random). In this case, we have
a systematic omission of a certain category in the data. This may occur as
aresult of incorrectly conducted social surveys or questionnaires in
medicine, as mentioned by Pereira et al. (2019). There are no observations
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depending on unknown factors, data omissions are systematically associated
with their expected values. It is assumed that the probability of missing
cannot be expressed based on the information contained in the dataset.

Carreras et al. (2021) points out that in the case of MCAR, it is
possible not to use imputations, since the absence of data is completely
random and does not lead to a bias in estimates and model parameters. The
main difference between MNAR and MAR is that missing data are related
to unobserved data and it is impossible to evaluate or estimate missing data
and all imputation methods not valid for MNAR. However, not all authors
believe that in MNAR case it is incorrect to apply imputations, see for
example Heymans and Twisk (2022). The only way to get an unbiased
estimate of the parameters in such a case is to model the missing data.

In this article, it is assumed that an entire cluster of objects, which we
call an empty cluster, is not included in our dataset and this missing is
classified as MNAR. We also assume that this empty cluster carries useful
information and ignoring these omissions may lead to an incorrect
interpretation of the source data or a bias in the estimation of model
parameters. It is assumed that there is no whole cluster in the dataset or only
a certain number of observations from it. In this case, outliers in the data
may not mean "unnecessary observations" at all, but a new cluster that we
do not observe. For example, participants in a sociological study may refuse
to provide information or not have access to surveys for various reasons, or
when conducting a study, the respondents may be divided into subsamples
for more effective analysis, while the researchers did not take into account
any specific category of respondents.

In economic research, there are limitations on the amount of data
collected due to the non- timely provision of reporting data, or the lack of
data in the source when collecting information. For example, in credit risk
tasks, an incorrect initial definition of a borrower’s cluster may lead to an
error in estimating the probability of a borrower’s default. Thus, this
approach changes not only the interpretation of outliers, but also allows for
re-evaluation of clustering output.

2.2. Handling empty clusters

Historical note. Cluster analysis has nowadays become a popular arca
of instrumental or explanatory data analysis. By today it is more than
60 years old when counting from one of the first works by Robert Sokal
and Peter Sneath in Sokal and Sneath (1963). It was then followed by
French researcher Diday (1972, 1979), also reviewed by Sokal (1984).
Edwin Diday contributed much to the systematic development of software
for the cluster-analysis. To name a few recent handbooks we may cite
Mirkin (2016); Raschka and Mirjalili (2019). Useful review can be found in
Xu and Tian (2015) where authors consider current SOTA (State of the Art)
approaches to cluster analysis and their application areas.

Empty clusters: visual identification and regression bias. Empty
clusters can be explained in different ways, depending on the definition. It is
indirectly mentioned by Forina et al. (2003). The authors propose
a statistical test to assess the quality of agglomerative clustering, and also
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propose an index of the informativeness of “empty spaces”, taking into
account the greatest distance between clusters. Giesen et al. (2017)
developed of a visualization tool for dot scatter diagrams with the allocation
of “empty” clusters.

McGee et al. (2020) investigate the long-term effects on health, in
particular, on the birth rate of children, as a result of external influences and
note that approaches using estimation equations necessarily exclude empty
clusters and, therefore, give biased estimates of marginal effects. Some
applied researchers suggest using the cluster label as an additional feature in
the regression problem like Piernik and Morzy (2021). Thus, an error in
clustering can lead to a bias in the regression estimates.

Initialization. The initialization of an empty cluster is a feature of the
implementation of the initial algorithm and this case is considered as
a disadvantage of the method, for example, k-means, and researchers try to
minimize such cases by upgrading classical algorithms. This situation may
occur when the correct initial conditions are not met and the optimizer finds
a local minimum, or when the input data is represented by binary or
categorical features (Raykov et al., 2016). (Raschka and Mirjalili, 2019, Ch.
11) note the disadvantages of algorithms, such as convergence,
computational complexity, initialization of empty clusters.

Yadav and Dhingra (2016) and Pakhira (2009) propose modifications
of the k-means algorithm, which are not initialized by empty clusters. The
authors take into account the positions of the centroids and the values of gap
statistics or use more modern optimizers. Hua et al. (2019) introduce
another implementation of the algorithm — the genetic XK-Means, which
also does not initialize empty clusters. Tavallali et al. (2021) note that the
initialization of empty clusters is detected as a result of the application of
the random selection algorithm.

Imputation. Another reason for the appearance of empty clusters is
the incompleteness of the data: if the data does not contain values for some
variables, this may lead to exclusion of the relevant observations from
clustering. To minimize this effect, the imputation procedure is used, see
Audigier et al. (2021). The idea is to first fill the data set with observations
corresponding to otherwise unidentifiable clusters. The disadvantage of the
approach is that it requires prior knowledge of where new observations are
being added.

Summary. Though clustering specifics seems to be well studied, the
challenge of empty classes seems to be unresolved. Heymans and Twisk
(2022) proposed to expand the idea of imputations to cluster analysis in
general. It is assumed that there is no whole cluster in the dataset oronly
a certain number of observations from it. In this case, outliers in the data
may not mean “unnecessary observations” at all, but a new cluster that we
do not observe.

3. Simulated Data
We start with the one-dimensional case in subsection 3.1 and extend it
to the two-dimensional one in subsection 3.2.
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3.1. One-dimensional case. We start from a uni-dimensional case like
in Figure 2. As a robustness check we add noise. We have 30 observations
overall which may take values from 2 to 9. For the two-dimensional case we
use the make blobs method from the sklearn library. These datasets can be
interpreted as mixtures of normal distributions with a given mode and
standard deviation. Since we know the initial number of clusters a priori, we
assume that the initial number of clusters will be two, but the added noise
makes it difficult to choose an explicit number of clusters. To check the
optimal number of initial partitions, we will use the metrics Distortion
Measure (Elbow-method), Silhouette Analysis, Calinski Harabas. K-means
is used as a clustering algorithm with implementation in the sklearn library
with the k-means++ initializer.
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Figure 2: 1-Dimensional Simulated Data

3.2. Two-dimensional case. We generate two normally distributed da-
tasets of 150 objects. Next, we add randomly distributed noise with a condi-
tional center between the two previous datasets. As a result, we got a mix-
ture of normal distributions and random noise. The initial data and the re-
sults of k-means clustering for two centers are shown in Figure 3.
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Figure 3: Visualization of initial data (a)
and clustering results for two clusters (b)
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To visualize the potential location for a latent “empty” cluster in the
two-dimensional case, we use the construction of a Voronov diagram like in
Figure 4. It can be assumed that in the area between the initial clusters,
where the polygonal grid is most sparse, there is an “empty” cluster. The
same procedure was made by Reddy and Jana (2012).

Figure 4: Voronov diagram for 2-Dimensional data

4. Methodology

We may not need searching for the optimal number of clusters if we
simulated data. However, in real-life when the data generation process is
unknown we would have thought of empty clusters existence in addition to
the ones optimally identified by the current procedure. The procedure itself
consists of the following steps:

* Estimate the range of the number of clusters for a dataset;

e Apply the clustering algorithm with the number of clusters selected
in the previous step;

eFor the found clusters, evaluate the distribution function of variables
using the maximum likelihood method and find the distribution parameters;

e Find the geometric center between the centroids;

* Generate data from a mixture of the found distributions and place the
center of the new cluster at an equidistant point between the cluster
centroids;

eRestart the clustering algorithm on new data with the number of
specified clusters increased by one;

e Compare cluster parameters, select points from the first partition of
the dataset that have changed the cluster label;

eFor the original dataset, leave the cluster labels taking into account
the empty cluster.

After the procedure is completed, further investigation of the found
“empty” cluster is expected. These points can be considered as outliers, and
not taken into account in our data. This way we can reduce the error of the
classification algorithm. On the contrary, for the remaining points of the
“empty” cluster, we may try to restore the type of distribution and add them
to the data again.
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In general, the next steps depend on the area of specific research and
the task being solved. The article discusses how the removal of these points
will affect the metrics of the classification algorithm. Since the data is
synthetic (simulated, artificial) and clearly linearly separatable, we will use
the random forest classifier and quadratic discriminant analysis as
classification algorithms.

The developed programming codes in Python are available in
Annexes A.1, A.2.

5. Findings

We discuss the one-dimensional case first in subsection 5.1; two-
dimensional one follows in sub-section 5.2.

5.1. One-dimensional case. Figure 5 provides the visual illustration
for the conventional clustering procedures. The vertical dashed line
indicated the optimal number of clusters per procedure. It equals to 4, 2 and
5, respectively.
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Figure 5: Clustering Data Without Noise:
top left — Distortion Measure; top right — Silhouette Analysis;
bottom — Calinski Harabasz
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Figure 6 illustrates how the empty clusters are identified for the
simulated data without noise and with it. For visibility we imputed 20
artificial observations for an empty clusters at the values of 6 and 7.
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Figure 6: Identifying Empty Clusters
for Data Without Noise (left)

5.2. Two-dimensional case. We define the type of distribution and its
parameter for the found clusters. After that, we generate a new data set from
a mixture of these distributions in proportion to the size of the original clus-
ters and place the center of the new cluster in the geometric center between
the found clusters. After that we restart clustering algorithm with three clus-
ters. New data and results of k-means clustering for the three centers are
presented in Figure 7.

Next, we remove the imputed data, but leave the cluster labels from
the last iteration of the algorithm. The resulting clusterization and
clusterization of the initial data set for the number of clusters equal to three
are shown in Figure 8.

Thus, we have isolated the boundary points from the initial partition
and assigned them to a separate cluster. In a specific example on the scatter
plot, it is noticeable that the data inside the “empty cluster” is correlated
(i.e., X1 is correlated to X2), although it was not initially assumed that there

a stable linear relationship between the explanatory variables. Thus, we
have demonstrated that noise in the data can actually be a potential cluster.
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It would be a mistake not to take into account its presence when
constructing classification models, since this would cause a bias in model
parameters.
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Figure 7: Visualization of new data and clustering results for three clusters
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Figure 8: Visualization of the source data with an “empty” cluster
and initial partitioning for three clusters

Next, consider the classification problem, where the class labels will
be the cluster labels from the first iteration. Since the classes are balanced, it
was enough to choose only Accuracy as the metric of the algorithm, but in
this study we will also consider Precision, Recall and F-1 measure. Let us
compare the metrics of the classification algorithm for two data sets: the
original one and the one with the removed elements of the “empty” cluster.
The data were divided into training (source) and validation (clear) samples.
The following algorithms were chosen for classification: Linear
discriminant analysis (LDA), quadratic discriminant analysis (QDA),
random forest classifier (RFC).

Table shows the accuracy metrics for each algorithm for the two
datasets. Despite the initial, almost linear division of classes, there is an
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increase in quality metrics for each algorithm in the validation sample.
Thus, the “empty” cluster can also make changes to the parameters of the
classification algorithm, which is especially bad when using embeddings
(i.e., artificially derived data based on the initial dataset, might be projected
values from the interim neural network layer) as explanatory variables.

The increase in metrics of classification algorithms

Accuracy Precision Recall F1

Source Clear Source Clear Source Clear Source Clear
LDA |0,9994 |1,0000 |1,0000 |[1,0000 |0,9988 |1,0000 |0,9994 |1,0000
QDA |0,9988 |1,0000 |1,0000 |1,0000 [0,9976 |1,0000 |0,9988 |1,0000

RFC |0,9958 |0,9982 |0,9941 |0,9976 [0,9976 |0,9988 |0,9959 |0,9982
Note: algorithms by rows: LDA — linear discriminant analysis, QDA — quadratic
discriminant analysis, RFC — random forest classifier; samples by columns:
source — training, clear — validation.

6. Conclusions

We proceed with the overview of the accomplished work in
subsection 6.1; we elaborate on the research extensions in subsection 6.2
and offer policy implications applicable to a commercial bank in
subsection 6.3.

6.1. Brief summary. The procedure with the assignment of empty
clusters was already implicitly considered in the literature, though with cer-
tain limitations. Here our objective was to start from the baseline case and
suggest an algorithm that runs one- and two-dimensional clustering for
a given number of clusters and reveal the domain of an empty cluster.

We have proposed such an algorithm. When varying the size of an
empty cluster with constant modes and standard deviation, it is noted that:

e if its size and width are less than the average of the original ones,
then the centroids practically do not shift relative to the original ones;

e if equal or greater, then, on the contrary, there is a shift of the
centroids and more objects receive a new label.

Thus, the algorithm for allocating and generating an empty cluster
should be parametric. It is demonstrated that this algorithm can be used to
clean up data from outliers when solving the classification problem, which
leads to an increase in classification accuracy metrics.

6.2. Research extensions. The current research has two natural
extensions:

e Identify potential empty clusters not only inside the existing space,
but also outside the boundaries (range or domain) of the original (observed
available) data. Figure 1 shows the simulated values from 2 to 9 with the
empty places in 6 and 7. However, one may fairly argue that the values of 1
and 10 are also empty. This means that one may extend our procedure to
identifying empty clusters not only in the interior of the existing values, but
at its exterior.
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Here we wish to mention the useful Bayesian rule when choosing
whether to assign an empty cluster in a unidimensional case: on the left or
on the right. Consider again Figure 1. The data is concentrated to the left
(below 5). It seems that concentration in the lower tail should imply the
existence of an empty class on the left.

However, we argue that we should look right on the opposite, i.e., to
the right. If the existing data is densely populated on the left, then by the
probability theory the potential empty cluster on the left should have been
filled already. Then we naturally assume that the extreme empty cluster on
Figure 1 would lie on the right, and not on the left.

e Identifying empty clusters in the multi-dimensional setting for more
than two dimensions. In the current implementation of the algorithm for
multidimensional data, one can attain this by reducing the dimension space
to two using data dimension reduction algorithms like PCA or t-SNE.

As a research extension it might be useful to recall the procedures for
the modeling of the confidence sets (regions), as a next step after the
confidence intervals’ modeling. For more details on confidence regions,
please, see (Shvedov, 2016, pp. 134-138, section 3.4), (Demidenko, 2019,
pp- 594-596, section 7.8.5).

6.3. Policy implications. When developing a business strategy for
a bank, a banker may wish to segment all its borrowers into distinct clusters.
Often the obtained groups reflect the creditworthiness of a bank client.
However, imagine that in the future a client from an unforeseen cohort
applies to a bank. Price offers based on any of the existing clusters would be
inadequate. They would either be unappealing to a client and he is going to
reject and move to a competitor. More troublesome is the case when the
offer would not reflect the sufficiently elevated risk level. The new customer
would highly likely accept the low-rated offer and the bank is to bear the
extra losses some time later. The potential remedy here would be running
the initial segmentation with a preview of the existence of additional
(empty) clusters which are not observed in the available (historical) data.
The developed code from the Annex can be used for the purpose.

A. Relevant Python Code
A.1. One-dimensional case
defadd_cluster(df, model , nclust,res1_arr):

mins = []
maxes = []
diffs =[]

df = df[df]’values’].isin([1,2,3,4,5,6,7,8,9])] for

clust in df .cluster.unique():
min_ =df [df [’cluster’]==clust][’values’].min()
max_=  df [df [’cluster’]==clust][’values’].max()
diff =max_ - min_

mins.append(min_)
maxes.append(max_)
diffs.append(diff )
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print(mins)
print(maxes)
print(diffs)
gaps = []
for 1 in range(0, df .cluster.nunique()):
ifi==0:
gap0 = min(mins)
gaps.append(gap0)
else:
gap = (mins[i] - maxes[i-1])
gaps.append(gap)
print(gaps)

df c =pd.DataFrame({’mins’:mins, *'maxes’:maxes, "diffs’:diffs, *gaps’:gaps})
print(df c)

indd = df c[df c[’gaps’] == df c[’gaps’].max()].index
val from = int(df c.iloc[indd-1][[’maxes’]].values[0][0])
val to = int(df c.iloc[indd][[’mins’]].values[0][0])

print(val from)

print(val to)
val from ind = df c[df c[’mins’]!=val to ind][’maxes’].max()+1
print(val_from_ind, val to ind)
print(df c[df c[’gaps’] == df c[’gaps’].max()].index)

index to insert = resl arr.index(val from)
new_arr = resl_arr.copy()

values_to_insert = [i for i in range(val from+1,val to)]
values_to_insert = [[1]*20 for i in values_to_insert]
values to_insert = sum(values to_insert, [])

print(values_to_insert)

for i in values _to_insert:
new_arr.insert(index_to_insert, 1)
index_to_insert += 1

new_arr = np.array(new_arr).reshape(-1,1)
print(new_arr)
pd.DataFrame(new_arr).plot(kind = *hist’, bins = 30)

model = model (n_clusters=nclust)
model.fit(tnew_arr )

yhat = model.fit_predict(new_arr )

clusters = np.unique(yhat)

df = pd.DataFrame({’cluster’:yhat, values’:new_arr})
make me hist (df)
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A.2. Two-dimensional case
# imports

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

from fitter import Fitter, get common_distributions, get_distributions
from sklearn.metrics import accuracy_score, f1_score, precision_score, recall score,
classification_report, confusion_matrix

from sklearn.linear model import LogisticRegression, ridge regression
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis,
QuadraticDiscriminantAnalysis

from sklearn.ensemble import RandomForestClassifier

from sklearn.metrics.pairwise import euclidean_distances

from sklearn.model selection import train_test split

from sklearn.preprocessing import StandardScaler

from sklearn.datasets import make blobs

from scipy.spatial import ConvexHull

from scipy import stats

# data generation and data preparation

X1, Y1 =make blobs(n_samples=5000,n_features=2, centers=2, random_state=42)
X1 = StandardScaler().fit_transform(X1)

noise = np.random.normal(0, 1, [int(len(X1)*0.10), 2])

X1 _noised = np.concatenate((X1, noise))

# visualisation
plt.scatter(X1 noised][:, 0], X1 noised[:, 1], marker="0", s=25, edgecolor="k")

# create dataframe

df = pd.DataFrame()

dff’x1’] = X1 _noised[:, 0]

df[’x2’] = X1 _noised[:, 1]

df = df[(np.abs(stats.zscore(df)) < 2.5).all(axis=1)]

# find initial centroids and clusters mark

kmeans = KMeans(n_clusters=2, random_state=0, init = ’k-means++”)
dff’cluster’] = kmeans.fit_predict(df[[’x1’, "x2’]])

centroids = kmeans.cluster _centers_

cen_x = [i[0] for i in centroids]

cen_y = [i[1] for i in centroids]

# add to df

df[’cen_x’] = df.cluster.map({0:cen _x[0], l:cen x[1]})

dff’cen_y’] = df.cluster.map({0:cen_y[0], l:cen y[1]})

# visualisation

plt.scatter(df.x1, df.x2, c=df.cluster, marker="0", s=25, edgecolor="k")
sns.jointplot(x = df.x1, y = df.x2, kind = ’scatter’, \

marginal_ticks = False, hue = df.cluster) # visualization
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make kmeans polygon_figure(df, 2) # visualisation

# find kind of distribution

f = Fitter(df[df] "cluster’]==0][*x1’].tolist(),\
distributions= get_common_distributions())
f.fit()

f.summary()

# find params of normal distribution
x1l mean 0 = df[df]’cluster’]==0][’x1’].mean()
x2 mean 0 = df[df]’cluster’]==0]["x2’].mean()

x1 _std 0 = df[df]’cluster’]==0]["x1"].std()
x2 std 0 dfldf’cluster’]==0]["x2’].std()

x1 mean 1 = df[df] cluster’]==1]["x1"].mean()
x2 mean_1 df[df] ’cluster’]==1][’x2’].mean()

x1 std 1 = df[df]’cluster’]==1]["x1"].std()
x2 std 1 dffdf] "cluster’]==1]["x2"].std()
print(x]_mean 0 ,x1 std 0,x2 mean_ 0, x2_std_0)
print(x]_mean 1 ,x1 std 1,x2 mean 1, x2 std 1)

# find mean size of clusters
df.groupby(’cluster’).count()[x1°]
df.groupby(’cluster’).count()[x1’].mean()

# find centeroid of "empty" cluster
new_centroid = tuple(np.median(centroids, axis=0))
print(new_centroid)

# create "empty" cluster

noise = np.random.normal(0, 1, [int(len(X1)*0.10), 2])

X1 add, Y1 add = make blobs(n_samples=407, n_features=2, centers = 1,\
center_box =new_centroid , cluster std = 0.32, random_state=42)

# concat initial data frames with"empty" cluster

df old = df[[’x1’°, ’x2’, ’cluster’]].copyO\

.rename(columns = {’cluster’:’cluster _old’})

df with _added = pd.DataFrame()

df with _added[’x1’] = X1_add[:, 0]

df with added[’x2’]= X1 _add[:, 1]

df with added = df with _added[(np.abs(stats.zscore(df with added)) < 2.5)\
.all(axis=1)]

df with added = df with added.append(df old)

# visualisation
plt.scatter(df with added.x1, df with added.x2, marker="0", s=25, edgecolor="k")

# concat initial data frames with"empty"
cluster # find new centroids and clusters mark
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kmeans = KMeans(n_clusters=3, random_state=0, init = ’k-means++")
df with_added[’cluster new’] = kmeans.fit predict(df with added[[’x1’, *x2°]])

# get centroids

centroids = kmeans.cluster centers_
cen_x = [i[0] for i in centroids]
cen_y = [i[1] for i in centroids]

df with added[’cen_x’] = df with added.cluster new.map({0:cen_x[0],\
l:cen x[1], 2:cen_x[2]})
df with added[’cen_y’] =df with added.cluster new.map({0:cen y[0],\
l:cen_y[1], 2:cen_x[2]})

# polygonal plot

fig, ax = plt.subplots(1, figsize=(8,8))
plt.scatter(df with _added.x1, df with added.x2, c=df with added.cluster new,\
marker="0", s=25, edgecolor="k")
plt.scatter(cen_x, cen_y, marker=""", s=25, edgecolor="k")
foriin df with added.cluster new.unique():
points = df with added[df with added.cluster new ==i][[’x1’, *x2]].values
hull = ConvexHull(points)
x_hull = np.append(points[hull.vertices,0],
points[hull.vertices,0][0])

y_hull = np.append(points[hull.vertices,1],
points[hull.vertices,1][0])
plt.fill(x_hull, y_hull, alpha=0.3)

# remove "empty" cluster
df with added remove new=df with added[df with added| cluster old’].isna(}=False]

# polygonal plot with new cluster mark
fig, ax = plt.subplots(1, figsize=(8,8))
plt.scatter(df with added remove new.x1, df with added remove new.x2,\
c=df with added remove new.cluster new, marker="0", s=25, edgecolor="k")
plt.scatter(cen_x, cen_y, marker=""", s=25, edgecolor="k")
for iin df with added remove new.cluster new.unique():

points = df with _added remove new[df with added remove new.cluster new =i\

[[’x1°, "x2°]].values

hull = ConvexHull(points)

x_hull = np.append(points[hull.vertices,0],

points[hull.vertices,0][0])

y_hull = np.append(points[hull.vertices, 1],
points[hull.vertices,1][0])
plt.fill(x_hull, y_hull, alpha=0.3)

# metrics evaluation

df with added remove new|[’remove’]=df with added remove new[’cluster old’]\
== df with added remove new|[’cluster new’]

df new =df with added remove new[df with added remove new|[’remove’[—True]
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X_train_src, X_test src,y train_src,y_test src = train_test_split(df[[’x1’,’x2’]],\
dff[’cluster’]], test _size=0.3, random_state=0)

X_train_new, X_test new, y train new,y test new = train_test split(df new[[’x1’,’x2’
df new][[’cluster old’]], test_size=0.3, random_state=0)

model old = LinearDiscriminantAnalysis()
model old.fit(x_train src, y train_src)
res_src = model old.predict(x test src)

accuracy_src = accuracy_score(y_test src, res_src)
precision_src = precision_score(y_test src, res_src)
recall src =recall_score(y_test src, res_src)

fl _src =fl_score(y_test src, res_src)

model new = LinearDiscriminantAnalysis()

model new.fit(x_train_new, y train_new)

res_new = model new.predict(x_test new)

accuracy_new = accuracy_score(y_test new, res_new)
precision_new = precision_score(y_test new, res_new)
recall new = recall score(y_test new, res new)

fl _new = f1_score(y_test new, res new)

print(’accuracy_src: ’, accuracy_src)
print(’precision_src: °, precision_src)
print(’recall_src: ’, recall_src)
print(’f1_src: °, f1_src)

print(’ )

print(’accuracy new: ’, accuracy new)
print(’precision_new: ’, precision_new)
print(’recall new: ’, recall new)
printCfl_new: ’, f1 _new)
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